SUPPORTING INFORMATION

Formulation of Fast-Disintegrating Drug Delivery System from Cyclodextrin/Naproxen Inclusion Complex Nanofibrous Films

Asli Celebioglu^a, Kareena Dash^b, Mahmoud Aboelkheir^a, Mehmet E. Kilic^c, Engin Durgun^d and Tamer Uyar^a*

^aFiber Science Program, Department of Human Centered Design

College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA

^bBiological Sciences, College of Arts and Sciences, Cornell University, Ithaca, NY, 14853, USA

^cComputational Science Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea

^dUNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey

*Corresponding Author: TU: tu46@cornell.edu

Application of release data on mathematical models:

Zero order model: The release of drug can be represented by the equation:

 $C_0-C_t = K_0 t$

 $C_t = C_0 + K_0 t$

 C_t is the amount of drug released at time t, C_0 is the initial concentration of drug at time t=0, K_0 is the zero-order rate constant. Here, the slope of the cumulative drug release *vs*. time plot gives the correlation coefficient (R^2) value.

First order model: The release of drug can be represented by the equation:

 $DC/dt = -K_1C$

 K_1 is the first order rate constant, expressed in time⁻¹ or per hour

After rearranging and integrating the equation,

Log C=log C₀- $K_1t/2.303$

 C_0 is the initial concentration of the drug, C is the percent of drug remaining at time t. Here, the slope of the log % of drug remaining *vs.* time gives the R^2 value.

Higuchi model: Higuchi release model is represented as:

 $M_t\!/M_\infty\!=K_ht^{1/2}$

where M_t/M_{∞} is the fraction of drug released at each time point (t), Mt is the amount of drug released in time t, $M\infty$ is the amount of drug released after time ∞ , and K_h represents the Higuchi release kinetic constant. Here, the plot is obtained by cumulative percentage drug release *vs*. square root of time and the slope gives R^2 value.

Korsmeyer-peppas model: Korsmeyer-peppas model is represented as:

 $M_t/M_\infty = K_{kp}t^n$

 $Log (M_t/M_{\infty}) = log K_{kp} + nlog t$

 M_t/M_{∞} is a fraction of drug released at time t, M_t is the amount of drug released in time t, M_{∞} is the amount of drug released after time ∞ , n is the diffusional exponent or drug release exponent, K_{kp} is the Korsmeyer release rate constant. Here, the graph is plotted between log cumulative % drug release *vs.* log time and the slope gives R^2 value.

Kinetic model	Naproxen	Naproxen/HPβCD (1/1) IC NF	Naproxen/HPβCD (1/2) IC NF
Zero-order	0.8322	0.2590	0.2230
First-order	0.9880	0.6884	0.6233
Higuchi	0.9732	0.4863	0.4392
Korsmeyer-Peppas	0.9791	0.7751	0.7676
Diffusion exponent (<i>n</i> value) *	0.6125	0.7398	0.6215

Table S1. The correlation coefficient (R^2) values of samples calculated by using different kinetic models.

*calculated by the linear regression of Korsmeyer-Peppas equation of $log(M_t/M_{\infty})$ versus log t.

Figure S1. pH value diagram of solutions prepared for phase solubility test against increasing CD concentrations.