Discovery of phenolic 2-arylideneisoquinolinones with antioxidant and α -glucosidase inhibition dual action.

Eduardo Hernández-Vázquez*, Siseth Martínez-Caballero, Diana Aldana-Torres, Samuel Estrada-Soto, Antonio Nieto-Camacho

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, CDMX, México.

*Corresponding author: ehervaz@iquimica.unam.mx

Content

¹ H-NMR and ¹³ C-NMR spectra of a-acylamino carboxamides 9a	S 2
¹ H-NMR and ¹³ C-NMR spectra of isoquinolinones 10a-r	S23
X-ray data	S44
IC ₅₀ data	S48
Cytotoxicity	S57
Sucrose tolerance tests AUC	S58
Glucose tolerance test	S60

¹H-NMR and ¹³C-NMR spectra of α-acylamino carboxamides **9a–r**.

Figure S2. ¹³C-NMR of 9a.

Figure S3. ¹H-NMR of 9b.

Figure S5. ¹H-NMR of 9c.

Figure S7. ¹H-NMR of 9d.

Figure S9. ¹H-NMR of 9e.

4.0

3.5

3.0

2.0

2.5

1.5

1.0

0.5

0.0

5.0 4.5 f1 (ppm)

. 9.0 . 8.5 8.0

. 7.5 . 7.0 6.5

. 6.0 5.5

Figure S11. ¹H-NMR of 9f.

Figure S13. ¹H-NMR of 9g.

Figure S15. ¹H-NMR of 9h.

Figure S17. ¹H-NMR of 9i.

Figure S19. ¹H-NMR of 9j.

Figure S21. ¹H-NMR of 9k.

Figure S23. ¹H-NMR of 9I.

Figure S25. ¹H-NMR of 9m.

Figure S27. ¹H-NMR of 9n.

Figure S29. ¹H-NMR of 9o.

Figure S31. ¹⁹F-NMR of 90.

Figure S33. ¹³C-NMR of 9p.

Figure S35. ¹H-NMR of 9q.

Figure S38. ¹³C-NMR of 9r.

¹H-NMR and ¹³C-NMR spectra of isoquinolinones **10a–r**.

Figure S41. ¹H-NMR of 10b.

Figure S43. ¹H-NMR of 10c.

Figure S45. ¹H-NMR of 10d.

Figure S47. ¹H-NMR of 10e.

Figure S49. ¹H-NMR of 10f.

S33

Figure S51. ¹H-NMR of **10g**.

Figure S52. ¹³C-NMR of 10g.

Figure S53. ¹H-NMR of 10h.

Figure S55. ¹H-NMR of **10i.**

Figure S57. ¹H-NMR of 10j.

Figure S59. ¹H-NMR of **10k.**

Figure S61. ¹H-NMR of 10I.

Figure S63. ¹H-NMR of 10m.

Figure S65. ¹H-NMR of 10n.

Figure S67. ¹H-NMR of 10o.

Figure S69. ¹⁹F-NMR of **100.**

Figure S71. ¹⁹F-NMR of **10p.**

Figure S72. ¹⁹F-NMR of 10p.

Figure S74. ¹³C-NMR of **10q.**

Figure S76. ¹³C-NMR of 10r.

X-Ray data

Bond precision:	C-C = 0.0060 A	Wavelengt	h=1.54178
Cell:	a=9.0933(12)	b=16.561(3)	c=19.628(4)
	alpha=90	beta=90	gamma=90
Temperature:	298 K		
	Calculated	Reported	
Volume	2955.9(9)	2956.0(9)
Space group	P 21 21 21	P 21 21	21
Hall group	P 2ac 2ab	P 2ac 2a	b
Moiety formula	C33 H36 N2 O4	C33 H36 1	N2 04
Sum formula	C33 H36 N2 O4	C33 H36 1	N2 04
Mr	524.64	524.64	
Dx,g cm-3	1.179	1.179	
Z	4	4	
Mu (mm-1)	0.616	0.616	
F000	1120.0	1120.0	
F000′	1123.26		
h,k,lmax	10,19,23	10,19,23	
Nref	5410[3062]	5397	
Tmin,Tmax	0.831,0.884	0.823,0.	864
Tmin'	0.831		
Correction meth AbsCorr = ANALY	od= # Reported T Li TICAL	mits: Tmin=0.823	Tmax=0.864
Data completene	ss= 1.76/1.00	Theta(max) = 68.3	20
R(reflections) =	0.0527(4678)	wR2(reflections)	= 0.1505(5397)
S = 1.073	Npar= 4	36	

.

IC₅₀ data

Comp.	Concentration (µM)	Percentage of inhibition (%)	IC ₅₀ (μΜ)	Comp.	Concentration (μM)	Percentage of inhibition (%)	IC₅₀ (μΜ)
	Basal	-			Basal	-	
	Control	-			Control	-	
	0.1	10.48±1.24			0.1	15.61±1.81	
10c	0.31	14.93±1.85	2.43±0.10	101	0.31	15.36±0.77	2.23±0.15
	1	28.33±1.57			1	31.22±1.44	
	3.16	59.47±3.29			3.16	62.64±3.71	
	10	95.33±0.75			10 Daval	93.93±1.42	
	Basal	-			Basal	-	
	Control	-				- 5 25 2 09	
104	1	14.27 ± 0.79	11 20,1 60	10n	0.1	0.23 ± 2.00	20,001
Tua	3.10	20.00±2.00 48 10±5 30	11.30±1.09	1011	0.31	9.23±3.71	2.9±0.01
	31.62	70.84±5.61			2.16	21.99±4.09	
	100	78.84±3.28			3.10	04.27 ± 0.79	
	Basal				Basal	- 94.27±0.20	
	Control	-			Control	-	
	0.1	13 41+0 78			0.1	9 24+1 75	
10f	0.31	19 75+2 05	1 39+0 04	10n	0.31	16 99+0 52	1 55+0 33
	1	38 14+1 93	1.0020.01		1	34 99+2 67	1.0010.00
	3.16	84.58+3.71			3.16	81.6+5.02	
	10	96.86±0.24			10	96.63±0.19	
	Basal	-			Basel		
	Control	-			Control	-	
	0.1	5.23±1.37			1	9.55±0.80	
10h	0.31	14.9±1.51	3.49±0.03	10q	3.16	17.47±2.04	22.69±3.21
	1	23.48±0.18			10	31.51±3.32	
	3.16	45.41±0.69			31.62	60.82±5.22	
	10	93.03±2.01			100	96.39±0.46	
	Basal	-			Basal	-	
	Control	-			Control	-	
10i	3 16	13.04±2.75 25.74±1.65	19.24±2.71	10r	3 16	14.4±1.99 24.61±1.52	0 81±0 87
101	10	35.57+4.20		101	10	50.84+4.64	9.01±0.07
	31.62	62.39±4.31			31.62	92.04±1.34	
	100	76.16±2.07			100	97.24±0.10	
	_				Basal	-	
	Basal	-			Control	- 4 62±0 57	
		- 19 70+3 82			0.1	4.02±0.57 8 26+1 31	
10j	3.16	39.72±4.55	4.75±0.55	α-TCP	1	21.13±2.56*	6.78±2.16
	10	74.00±2.95			3.16	44.84±6.74**	μM
	31.62	96.34±0.73			10	59.00±3.71**	
	100	97.05±0.42			31.62	72.3±3.87**	
	Basal	-			100	19.09±4.19	
	Control	-					
	0.32	5.23±1.17					
	0.56	10.93±1.20	1 496+0 031				
Quer	1	27.88±2.05**	μM				
	1.78	02.08±1.93**	•				
	5.10	94 90+1 13**					
	10	95.65±1.24**					

Comp.	Concentration (μM)	Percentage of inhibition (%)	IC₅₀ (μM)	Comp.	Concentration (μM)	Percentage of inhibition (%)	IC₅₀ (μM)
10a	Control 31.62 42.17 56.23 74.13 100	3.48±9.53 15.17±6.62 26.77±4.37 55.81±3.43 78.40±3.34	50.63±2.28	10j	Control 31.62 42.17 56.23 74.13 100	9.46±2.22 16.16±1.25 39.92±1.95 81.08±4.6 91.61±0.78	60.08±1.18
10b	Control 31.62 42.17 56.23 74.13 100	- 3.20±0.90 7.27±0.94 14.80±1.81 36.95±1.32 81.70±1.12	68.04±0.28	10k	Control 31.62 42.17 56.23 74.13 100	2.95±8.24 12.72±9.92 21.19±8.46 58.10±3.43 96.50±3.08	50.05±3.07
10c	Control 1 10 100	- 2.06 5.00 35.74	>100	101	Control 31.62 42.17 56.23 74.13 100	5.34±1.41 15.57±2.27 38.04±3.17 77.23±5.33 93.8±1.67	61.31±1.72
10d	Control 10 17.78 31.62 56.23 100	6.80±1.14 16.48±2.97 49.24±3.40 94.79±1.39 93.83±0.28	31.49±0.82	10m	Control 31.62 42.17 56.23 74.13 100	- 2.44±4.49 7.34±5.38 18.4±4.68 58.04±7.71* * 93.68±2.35*	52.47±4.16
10e	Control 31.62 42.17 56.23 74.13 100	20.65±8.36 19.24±6.89 32.35±2.57 63.31±1.92 91.32±2.47 97.12±1.78	14.75±0.30	10n	Control 10 17.78 31.62 56.23 100	- 3.40±0.53 4.02±1.08 11.89±0.35 47.97±0.47 95.49±0.20	57.21±0.17
10f	Control 10 17.78 31.62 56.23 100	- 17.12±1.56 27.92±0.71 49.46±2.63 82.83±10.5 3 90.90±7.47	33.07±1.73	100	Control 31.62 42.17 56.23 74.13 100	15.44 ± 3.93 20.94 ±4.83 37.88 ±2.29 63.16 ±3.29 91.05 ±2.19 99.67 ±1.46	13.70±0.56
10g	Control 31.62 42.17 56.23 74.13 100	- -4.39±8.8 13.73±5.79 52.30±5.04 97.78±1.47 95.22±5.37	30.22±1.07	10p	Control 10 17.78 31.62 56.23 100	- 4.98±3.20 13.05±2.30 15.65±0.99 21.96±4.74 34.00±4.24	>100

Table S2. α -glucosidase inhibition IC50 data of isoquinolinones, acarbose and quercetin.

Comp.	Concentratio n (μM)	Percentage of inhibition (%)	IС₅₀ (µМ)	Comp.	Concentration (μM)	Percentage of inhibition (%)	IC₅₀ (μM)
	Control	-			Control	-	
	31.62	21.56±2.94			10	2.17±0.98	
106	42.17	44.11±8.54	44 27 2 20	100	17.78	2.17±0.03	92.78±1.31
1011	56.23	80.64±5.47	44.37±2.39	ivq	31.62	5.55±0.71	
	74.13	91.25±4.82			56.23	10.91±0.53	
	100	94.91±3.25			100	66.49±5.48	
	Control	-			Control	-	
	31.62	13.44±1.36			10	2.74±1.97	
10;	42.17	29.26±3.22	50 52+1 91	10r	17.78	8.59±1.1	
101	56.23	66.33±7.01	50.52±1.01	101	31.62	9.5±1.46	>100
	74.13	91.27±1.91			56.23	8.32±4.81	
	100	98.64±2.26			100	29.08±2.17	
	Control	-			Control	-	
	2040.09	29.9±2.17			1	6.71±0.40	
Assubase	3628.27	43.14±1.64	4687.06±21	0	1.78	12.14±1.29	
Acarbose	6456.00	59.17±1.66	9.50	Quer	3.16	24.24±4.94	15.61±1.68
	11478.77	72.54±1.55			5.62	53.39±8.74	
	20413.87	82.93±0.10			10	82.89±3.44	

Cytotoxicity

Compound	Percentage of growth inhibition of COS-7
10e	5.0
10f	NC
10g	NC
100	NC
10p	7.6

Table S3. Percentage of inhibition against healthy cell line COS-7 of selected isoquinolinones at 50 μ M.

Cytotoxicity assay was performed in accordance to our previous works without modifications.¹

1 Á. Ramírez-Trinidad, K. Carrillo-Jaimes, J. A. Rivera-Chávez and E. Hernández-Vázquez, *Med Chem Res*, 2023, **32**, 144–157.

Sucrose tolerance assay

The area under the curve of sacarose tolerance test is shown herein.

Figure S77. AUC of sucrose tolerance test. A) Less active compounds; only **100** showed a significant reduction of glucose; b) Compound **10g**; c) Compound **10f**. Both compounds show a dose-dependent glucose reduction. *p < 0.05.

Glucose tolerance assay

Figure S78. Oral glucose tolerance test of **10g** and **10o**, along with glibenclamide. No glucose reduction was observed with the isoquinolines. *p < 0.05.

Figure S79. AUC of GTA. Only glibenclamide showed a significant difference against control.

*p < 0.05.