SUPORTING INFORMATION

Discovery of a new pyrido[2,3-*d*]pyridazine-2,8-dione derivative as a potential antiinflammatory agent through COX-1/COX-2 dual inhibition

Fernanda A. Rosa*^a, Davana S. Gonçalves^a, Karlos E. Pianoski^a, Michael J. V. da Silva^a, Franciele

Q. Ames^b, Rafael P. Aguiar^b, Hélito Volpato^c, Danielle Lazarin-Bidóia^c, Celso V. Nakamura^c,

Ciomar A. Bersani-Amado^b

^aDepartamento de Química, Universidade Estadual de Maringá (UEM), 87030-900, Maringá, PR, Brazil. ^bDepartamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá (UEM), 87030-900 Maringá, PR, Brazil.

^cPós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá (UEM), 87020-900 Maringá, PR, Brazil

*Correspondence to: farosa@uem.br

Table of contents

Chemistry

Materials and instrumentation	S2
Synthesis and characterization of compounds	\$2-\$8
¹ H and ¹³ C NMR spectra	

Anti-inflammatory activity

Mouse ear edema assay	S65
Cytotoxicity assay	S65-S66
In vitro COX-1/COX-2 inhibition assay	S66
Docking Molecular study with COX-1 and COX-2	
References	S69

Chemistry

Materials and instrumentation. Reagent-grade solvents were applied and purified via standard methods if necessary. The reactions were monitored on thin-layer chromatography (TLC) using UV light. The melting point data of the synthesized compounds were obtained on a micro melting point apparatus and were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance-300 NMR spectrometer or a Bruker Avance-500 NMR spectrometer in CDCl₃ with TMS as an internal reference. Chemical shifts and *J* values were expressed in δ units (ppm) and in hertz (Hz), respectively. ESI(+)-MS and tandem ESI(+)-MS/MS were acquired using a hybrid high-resolution and high-accuracy microTof (Q-TOF) mass spectrometer (Bruker). For ESI(+)-MS, the energy for the collision-induced dissociations (CDI) was optimized for each component. For data acquisition and processing, the Q-TOF-control data analysis software (Bruker Scientific) was used.

Synthesis and characterization of compounds

General method for the synthesis of 3,5-disubstituted-pyrido[2,3-*d*]pyridazin-2,8-dione derivatives 4a-g and 5a-g.

Method A. The prepared compound **2** or **3**¹ (1.0 mmol, 1.0 equiv.) and monohydrate of hydrazine (4.0 mmol, 4.0 equiv.) were dissolved in the solution of EtOH and MeCN (1:1 v/v). The mixture was stirred at 80 °C for 6 h (R= NO₂, Br, Cl, F, H, Me) or 16 h (R= OMe). The reaction mixture was cooled in an ice bath, the precipitated solid was filtered, washed with cold ethanol (10 mL), and dried under reduced pressure to obtain the pure product without the need for further purification steps.

Method B (one-pot). The β -enamino diketone 1^2 (1.0 mmol, 1.0 equiv.) and active methylene reagents (malonitrile or ethyl cyanoacetate, 1.0 mmol, 1.0 equiv.) were dissolved in EtOH (5 mL), and the mixture stirred under reflux for 8-24 h. After being monitored by TLC, hydrazine monohydrate (4.0 mmol, 4.0 equiv.) was added to reaction, and the mixture stirred under reflux for more 6-16 h. The reaction mixture was cooled in an ice bath, the precipitated solid was then filtered, washed with cold ethanol (10 mL), and dried under reduced pressure to obtain the pure product without the need for further purification steps.

3-Cyano-5-(4-nitrophenyl)-pyrido[2,3-*d***]pyridazin-2,8(1***H*,7*H***)-dione** (**4a**): Yellow solid, yield: 80%, mp > 330.0 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 7.83 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 8.7 Hz), 8.95 (*s*, 1H, H4), 8.35 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 8.7 Hz). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 106.4 (C3), 111.8 (CN), 118.0 (C4a), 124.2, 131.0, 141.7, 148.0 (4-NO₂-C₆H₄), 143.3 (C4), 144.5 (C5), 146.2 (C8a), 158.1 (C8), 167.3 (C2). HRMS (ESI+) *m/z* calcd for C₁₄H₈N₅O₄ [M+H]⁺: 310.0571, found 310.0589.

3-Cyano-5-(4-bromophenyl)-pyrido[2,3-*d*]**pyridazin-2,8**(*1H,7H*)-dione (4b): Yellow solid, yield: 75%, mp > 311.3 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 7.49 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.4 Hz), 7.73 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.4 Hz), 8.03 (*s*, 1H, H4). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 107.1 (C3), 112.1 (CN), 117.6 (C4a), 123.0, 131.7, 132.0, 134.3 (4-Br-C₆H₄), 145.1 (C4), 145.1 (C5), 145.2 (C8a), 157.7 (C8), 166.4 (C2). HRMS (ESI+) *m/z* calcd for C₁₄H₈BrN₄O₂⁺ [M+H]⁺: 342.9825, found 342.9857.

3-Cyano-5-(4-chlorophenyl)-pyrido[2,3-*d***]pyridazin-2,8(1***H*,7*H***)-dione (4c**): Yellow solid, yield: 88%, mp > 330.1 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 7.55 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.8 Hz), 7.58 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.8 Hz), 7.85 (*s*, 1H, H4); ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 105.4 (C3), 112.0 (CN), 118.4 (C4a), 129.1, 131.4, 134.1, 134.2 (4-Cl-C₆H₄), 143.1 (C4), 145.4 (C5), 147.5 (C8a), 159.0 (C8), 168.9 (C2); HRMS (ESI+) *m/z* calcd for C₁₄H₈ClN₄O₂⁺ [M+H]⁺: 299.0330, found 299.0336.

3-Cyano-5-(4-fluorophenyl)-pyrido[2,3-*d***]pyridazin-2,8(1***H*,7*H***)-dione (4d**): Yellow solid, yield: 88%, mp > 300.0 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 7.34 (*dd*, 2H, 4-F-C₆H₄, *J* = 8.8, 8.8 Hz), 7.57 (*dd*, 2H, 4-F-C₆H₄, *J* = 8.8, 8.8 Hz), 7.89 (*s*, 1H, H4). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 106.0 (C3), 112.3 (CN), 118.2 (C4a), 115.9 (*d*, J²_{C-F}= 21.7 Hz, 4-F-C₆H₄), 131.7 (*d*, J⁴_{C-F}= 3.17 Hz, 4-F-C₆H₄), 131.8 (*d*, J³_{C-F}= 8.63 Hz, 4-F-C₆H₄), 143.5 (C4), 145.5 (C5), 146.6 (C8a), 158.6 (C8), 162.9 (*d*, J¹_{C-F}= 246.0 Hz, 4-F-C₆H₄), 168.1 (C2). **HRMS** (ESI+) *m/z* calcd for C₁₄H₈FN₄O₂⁺ [M+H]⁺: 283.0626, found 283.0632.

3-Cyano-5-phenyl-pyrido[**2**,**3**-*d*]**pyridazin-2**,**8**(*1H*,*7H*)-dione (**4e**): Yellow solid, yield: 82%, mp > 306.0 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 7.52 (*s*, 5H, C₆H₅), 7.83 (*s*, 1H, H4). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 105.4 (C3), 112.2 (CN), 118.4 (C4a), 129.0, 129.3, 129.5, 135.3 (C₆H₄), 143.2 (C4), 146.5 (C5), 147.4 (C8a), 159.1 (C8), 169.0 (C2). HRMS (ESI+) *m/z* calcd for C₁₄H₉N₄O₂⁺ [M+H]⁺: 265.0720, found 265.0730.

3-Cyano-5-(4-methylphenyl)-pyrido[2,3-*d***]pyridazin-2,8(***1H***,***7H***)-dione (4f): Yellow solid, yield: 72%, mp > 325.7 °C. ¹H NMR (500.13 MHz, DMSO-***d***₆) δ 2.38 (***s***, 3H, CH₃), 7.36 (***d***, 2H, 4-CH₃-C₆H₄,** *J* **= 8.0 Hz), 7.41 (***d***, 2H, 4-CH₃-C₆H₄,** *J* **= 8.0 Hz), 7.96 (***s***, 1H, H4). ¹³C NMR (125.77 MHz, DMSO-***d***₆) δ 21.3 (CH₃), 107.2 (C3), 112.4 (CN), 117.6 (C4a), 129.4, 129.6, 132.2, 138.9 (4-CH₃-C₆H₄), 144.2**

(C4), 144.9 (C3a), 146.1 (C5), 157.5 (C8), 166.1 (C2). **HRMS** (ESI+) m/z calcd for C₁₅H₁₁N₄O₂⁺ [M+H]⁺: 279.0877, found 279.0885.

3-Cyano-5-(4-methoxyphenyl)-pyrido[2,3-*d*]**pyridazin-2,8**(*1H*,*7H*)-**dione** (**4g**): Yellow solid, yield: 61%, mp > 308.3 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 3.83 (*s*, 3H, OCH₃), 7.36 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 8.7 Hz), 7.69 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 8.7 Hz), 7.85 (*s*, 1H, H4). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 55.7 (OCH₃), 107.5 (C3), 112.5 (CN), 117.5 (C4a), 114.5, 127.2, 130.9, 160.2 (4-OCH₃-C₆H₄), 144.3 (C4), 144.5 (C8a), 145.8 (C5), 157.1 (C8), 165.4 (C2). HRMS (ESI+) *m/z* calcd for C₁₅H₁₁N₄O₃⁺ [M+H]⁺: 295.0826, found 295.0837.

3-ethyloxycarbonyl-5-(4-nitrophenyl)-pyrido[2,3-*d***]pyridazin-2,8(***1H,7H***)-dione** (**5a**): Yellow solid, yield: 85%, mp > 210.0 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 1.22 (*t*, 3H, OCH₂CH₃, *J* = 7.1 Hz), 4.22 (*q*, 2H, OCH₂CH₃, *J* = 7.1 Hz), 7.84 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 8.9 Hz), 7.95 (*s*, 1H, H4), 8.39 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 8.9 Hz), 7.95 (*s*, 1H, H4), 8.39 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 8.9 Hz). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 14.1 (OCH₂CH₃), 61.6 (OCH₂CH₃), 112.1 (C3), 129.1 (C4a), 124.1, 130.8, 140.5, 148.1 (4-NO₂-C₆H₄), 137.6 (C8a), 138.9 (C4), 143.8 (C5), 153.7 (C8), 158.1 (C2), 164.0 (C=O). HRMS (ESI+) *m/z* calcd for C₁₆H₁₂N₄O₆⁺ [M+H]⁺: 357.0830, found 357.0813.

3-ethyloxycarbonyl -5-(4-bromophenyl)-pyrido[2,3-*d***]pyridazin-2,8(***1H,7H***)-dione (5b**): Yellow solid, yield: 70%, mp: 299.0-300.8 °C; ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 1.22 (*t*, 3H, OCH₂CH₃, *J* = 7.1 Hz), 4.21 (*q*, 2H, OCH₂CH₃, *J* = 7.1 Hz), 7.50 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.4 Hz), 7.76 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.4 Hz), 7.89 (*s*, 1H, H4). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 14.4 (OCH₂CH₃), 61.7 (OCH₂CH₃), 112.4 (C3), 129.1 (C4a), 123.4, 131.7, 132.2, 133.7 (4-Br-C₆H₄), 138.1 (C8a), 139.5 (C4), 144.8 (C5), 154.0 (C8), 158.5 (C2), 164.3 (C=O). HRMS (ESI+) *m/z* calcd for C₁₆H₁₂BrN₃O₄⁺ [M+H]⁺: 390.0084, found 390.0066.

3-ethyloxycarbonyl-5-(4-chlorophenyl)-pyrido[2,3-*d***]pyridazin-2,8(***1H,7H***)-dione** (**5c**): Yellow solid, yield: 77%, mp > 258.0 °C. ¹H NMR (300.06 MHz, DMSO-*d*₆) δ 1.23 (*t*, 3H, OCH₂CH₃, *J* = 7.1 Hz), 4.23 (*q*, 2H, OCH₂CH₃, *J* = 7.1 Hz), 7.60 (*q*, 4H, 4-Cl-C₆H₄, *J* = 8.8 Hz), 7.96 (*s*, 1H, H4). ¹³C NMR (75.46 MHz, DMSO-*d*₆) δ 14.6 (OCH₂CH₃), 61.9 (OCH₂CH₃), 112.7 (C3), 129.3 (C4a), 129.5, 131.7, 133.5, 134.9 (4-Cl-C₆H₄), 138.1 (C8a), 139.8 (C4), 144.9 (C5), 154.1 (C8), 158.5 (C2), 164.5 (C=O). **HRMS** (ESI+) *m/z* calcd for C₁₆H₁₂ClN₃O₄⁺ [M+H]⁺: 346.0589, found 346.0569.

3-ethyloxycarbonyl-5-(4-fluorophenyl)-pyrido[2,3-*d***]pyridazin-2,8(***1H,7H***)-dione** (5d): Yellow solid, yield: 83%, mp: 253.6-255.2 °C. ¹H NMR (300.06 MHz, DMSO-*d*₆) δ 1.21 (*t*, 3H, OCH₂CH₃, *J* = 7.1 Hz), 4.17 (*q*, 2H, OCH₂CH₃, *J* = 7.1 Hz), 7.37 (*dd*, 2H, 4-F-C₆H₄, *J* = 8.9, 8.9 Hz), 7.56 (*dd*, 2H, 4-F-C₆H₄, *J* = 8.9, 8.9 Hz), 7.77 (*s*, 1H, H4). ¹³C NMR (75.46 MHz, DMSO-*d*₆) δ 14.1 (OCH₂CH₃), 61.4 (OCH₂CH₃), 112.2 (C3), 115.8 (*d*, *J*²_{C-F} = 21.8 Hz, 4-F-C₆H₄), 128.7 (C4a), 130.6 (*d*, *J*⁴_{C-F} = 3.1 Hz, 4-F-C₆H₄), 131.6 (*d*, *J*³_{C-F} = 8.6 Hz, 4-F-C₆H₄), 137.5 (C8a), 139.5 (C4), 144.6 (C5), 153.5 (C8), 158.0

(C2), 162.8 (*d*, J¹_{C-F} = 246.7 Hz, 4-F-C₆H₄), 163.9 (C=O). HRMS (ESI+) *m/z* calcd for C₁₆H₁₂FN₃O₄⁺
[M+H]⁺: 330.0885, found 330.0874.

3-ethyloxycarbonyl-5-phenyl-pyrido[2,3-*d***]pyridazin-2,8(***1H***,7***H***)**-dione (5e): Yellow solid, yield: 78%, mp > 229.3 °C. ¹H NMR (300.06 MHz, DMSO-*d*₆) δ 1.21 (*t*, 3H, OCH₂CH₃, *J* = 7.1 Hz), 4.21 (*q*, 2H, OCH₂CH₃, *J* = 7.1 Hz), 7.55 (*s*, 5H, C₆H₅), 7.97 (*s*, 1H, H4). ¹³C NMR (75.46 MHz, DMSO-*d*₆) δ 14.0 (OCH₂CH₃), 61.4 (OCH₂CH₃), 112.1 (C3), 129.5 (C4a), 128.5, 128.8, 129.2, 134.0 (C₆H₅), 137.6 (C8a), 139.7 (C4), 145.4 (C5), 153.5 (C8), 157.9 (C2), 163.8 (C=O). HRMS (ESI+) *m/z* calcd for C₁₆H₁₃N₃O₄⁺ [M+H]⁺: 312.0979, found 312.0967.

3-ethyloxycarbonyl-5-(4-methylphenyl)-pyrido[2,3-*d*]**pyridazin-2,8**(*1H*,*7H*)-dione (5f): Yellow solid, yield: 73%, mp > 249.0 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 1.20 (*t*, 3H, OCH₂CH₃, *J* = 7.1 Hz), 2.39 (*s*, 3H, CH₃), 4.17 (*q*, 2H, OCH₂CH₃, *J* = 7.1 Hz), 7.33 (*d*, 2H, 4-CH₃-C₆H₄, *J* = 8.0 Hz), 7.39 (*d*, 2H, 4-CH₃-C₆H₄, *J* = 8.0 Hz), 7.82 (*s*, 1H, H4). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 14.0 (OCH₂CH₃), 20.9 (CH₃), 61.3 (OCH₂CH₃), 112.1 (C3), 128.5 (C4a), 129.1, 129.3, 131.2, 138.9 (4-CH₃-C₆H₄), 137.5 (C8a), 139.7 (C4), 145.3 (C5), 153.4 (C8), 157.9 (C2), 163.9 (C=O). HRMS (ESI+) *m/z* calcd for C₁₇H₁₅N₃O₄⁺ [M+H]⁺: 326.1135, found 326.1117.

3-ethyloxycarbonyl-5-(4-methoxyphenyl)-pyrido[2,3-*d*]**pyridazin-2,8**(*1H*,7*H*)-dione (5g): Yellow solid, yield: 71%, mp: 253.4-255.3 °C. ¹H NMR (300.06 MHz, DMSO-*d*₆) δ 1.23 (*t*, 3H, OCH₂CH₃, *J* = 7.1 Hz), 3.84 (*s*, 3H, OCH₃), 4.23 (*q*, 2H, OCH₂CH₃, *J* = 7.1 Hz), 7.11 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 8.8 Hz), 7.48 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 8.8 Hz), 8.02 (*s*, 1H, H4), 13.30 (*s*, 1H, NH). ¹³C NMR (75.46 MHz, DMSO-*d*₆) δ 14.0 (OCH₂CH₃), 55.4 (OCH₂CH₃), 61.3 (OCH₃), 112.2 (C3), 114.2, 126.3, 130.6, 160.1 (4-OCH₃-C₆H₄), 128.4 (C4a), 137.5 (C8a), 139.8 (C4), 145.1 (C5), 153.4 (C8), 157.9 (C2), 163.9 (C=O). HRMS (ESI+) *m/z* calcd for C₁₇H₁₅N₃O₅⁺ [M+H]⁺: 342.1084, found 342.1068.

General method for the Synthesis of 3-carboxy-5-substituted-pyrido[2,3-*d*]pyridazin-2,8diones 6a-g

To the synthesized compound **5** (1.0 mmol, 1.0 equiv.) a solution of sodium hydroxide (4M, 15mL) was added. The mixture was stirred at room temperature for 6 hours. Afterward, 10 mL of water was added, and the mixture was acidified to a pH of 1 using a 37% HCl solution. The preciptated solid was then filtered, washed with cold water (30 mL), and dried under reduced pressure to obtain the pure product without the need for further purification steps.

3-Carboxy-5-(4-nitrophenyl)-pyrido[2,3-*d***]pyridazin-2,8(***1H,7H***)-dione** (6a): Yellow solid, yield: 85%, mp: 299.7-301.5 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 7.83 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 8.8 Hz), 8.38 (*d*, 2H, 4-NO₂-C₆H₄, *J* = 8.8 Hz), 8.40 (*s*, 1H, H4), 13.23 (*Is*, 1H, OH), 13.62 (*Is*, 1H, NH). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 112.1 (C3), 129.1 (C4a), 124.1, 130.8, 140.5, 148.1 (4-NO₂-C₆H₄), 137.6 (C8a), 138.9 (C4), 143.8 (C5), 153.7 (C8), 158.1 (C2), 164.0 (C=O). HRMS (ESI+) *m/z* calcd for C₁₄H₈N₄O₆⁺ [M+H]⁺: 328.0444, found 328.0426.

3-Carboxy-5-(4-bromophenyl)-pyrido[2,3-*d*]**pyridazin-2,8(1***H*,7*H*)-dione (6b): Yellow solid, yield: 80%, mp: 301.6-303.4 °C. ¹H NMR (300.06 MHz, DMSO-*d*₆) δ 7.52 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.4 Hz), 7.80 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.4 Hz), 8.24 (*s*, 1H, H4), 13.55 (*ls*, 1H, NH). ¹³C NMR (75.46 MHz, DMSO-*d*₆) δ 113.6 (C3), 124.7 (C4a), 123.2, 131.3, 131.9, 133.0 (4-Br-C₆H₄), 137.6 (C8a), 141.3 (C4), 144.3 (C5), 153.5 (C8), 162.7 (C2), 164.0 (<u>C</u>O₂H). HRMS (ESI+) *m/z* calcd for C₁₄H₈BrN₃O₄⁺ [M+H]⁺: 360.9698, found 360.9682.

3-Carboxy-5-(4-chlorophenyl)-pyrido[2,3-*d***]pyridazin-2,8(***1H,7H***)-dione** (**6c**): Yellow solid, yield: 81%, mp: 296.2-298.1 °C. ¹H NMR (300.06 MHz, DMSO-*d*₆) δ 7.59 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.5 Hz), 7.67 (*d*, 2H, 4-Cl-C₆H₄, *J* = 8.5 Hz), 8.24 (*s*, 1H, H4), 13.54 (*Is*, 1H, NH). ¹³C NMR (75.46 MHz, DMSO-*d*₆) δ 113.7 (C3), 124.7 (C4a), 129.0, 131.1, 132.7, 134.5 (4-Cl-C₆H₄), 137.6 (C8a), 141.4 (C4), 144.3 (C5), 153.6 (C8), 162.8 (C2), 164.1 (<u>C</u>O₂H). **HRMS** (ESI-) *m/z* calcd for C₁₄H₈ClN₃O₄ [M-H]⁻: 316.0125, found 316.0154.

3-Carboxy-5-(4-fluorophenyl)-pyrido[2,3-*d*]**pyridazin-2,8(***1H*,*7H*)-dione (6d): Yellow solid, yield: 80%, mp > 350.0 °C. ¹H NMR (300.06 MHz, DMSO-*d*₆) δ 7.43 (*dd*, 2H, 4-F-C₆H₄, *J* = 8.9, 8.9 Hz), 7.62 (*dd*, 2H, 4-F-C₆H₄, *J* = 8.9, 8.9 Hz), 8.25 (*s*, 1H, H4), 13.51 (*ls*, 1H, NH). ¹³C NMR (75.46 MHz, DMSO-*d*₆) δ 113.9 (C3), 115.9 (*d*, *J*²_{C-F} = 21.8 Hz, 4-F-C₆H₄), 124.5 (C4a), 130.3 (*d*, *J*⁴_{C-F} = 3.1 Hz, 4-F-C₆H₄), 131.5 (*d*, *J*³_{C-F} = 8.6 Hz, 4-F-C₆H₄), 137.6 (C8a), 141.6 (C4), 144.5 (C5), 153.5 (C8), 162.8 (*d*, *J*¹_{C-F} = 247.0 Hz, 4-F-C₆H₄), 162.9 (C2), 164.0 (<u>C</u>O₂H). **HRMS** (ESI+) *m/z* calcd for C₁₄H₈FN₃O₄⁺ [M+H]⁺: 302.0572, found 302.0546.

3-Carboxy-5-phenyl-pyrido[2,3-*d***]pyridazin-2,8(1***H***,7***H***)-dione (6e): Yellow solid, yield: 90%, mp > 345.0 °C. ¹H NMR (300.06 MHz, DMSO-***d***₆) δ 7.58 (***m***, 5H, C₆H₅), 8.29 (***s***, 1H, H4), 13.51 (***ls***, 1H, NH). ¹³C NMR (75.46 MHz, DMSO-***d***₆) δ 113.9 (C3), 124.4 (C4a), 128.9, 129.2, 129.6, 133.8 (C₆H₅), 137.6 (C8a), 141.8 (C4), 145.4 (C5), 153.6 (C8), 163.0 (C2), 164.0 (<u>C</u>O₂H). HRMS (ESI+)** *m/z* **calcd for C₁₄H₉N₃O₄⁺ [M+H]⁺: 284.0666, found 284.0645.**

3-Carboxy-5-(4-methylphenyl)-pyrido[2,3-*d***]pyridazin-2,8(1***H*,7*H***)-dione** (**6***f*): Yellow solid, yield: 78%, mp 292.3-293.1 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 2.50 (*s*, 3H, CH₃), 7.39 (*d*, 2H, 4-CH₃-C₆H₄, *J* = 7.8 Hz), 7.44 (*d*, 2H, 4-CH₃-C₆H₄, *J* = 7.8 Hz), 8.30 (*s*, 1H, H4), 13.47 (*ls*, 1H, NH). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 20.9 (CH₃), 113.9 (C3), 124.3 (C4a), 129.1, 129.4, 130.9, 137.5

(4-CH₃-C₆H₄), 139.2 (C8a), 141.9 (C4), 145.3 (C5), 153.5 (C8), 162.9 (C2), 163.9 (<u>C</u>O₂H). **HRMS** (ESI+) *m/z* calcd for C₁₅H₁₁N₃O₄⁺ [M+H]⁺: 298.0822, found 298.0807.

3-Carboxy-5-(4-methoxyphenyl)-pyrido[2,3-*d*]**pyridazin-2,8(***1H*,*7H***)-dione** (**6g**): Yellow solid, yield: 70%, mp: 225.6-227.5 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 3.84 (*s*, 3H, OCH₃), 7.13 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 8.7 Hz), 7.49 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 8.7 Hz), 8.32 (*s*, 1H, H4), 13.43 (*ls*, 1H, NH). ¹³C NMR (75.46 MHz, DMSO-*d*₆) δ 55.4 (OCH₃), 114.3 (C3), 124.2 (C4a), 114.2, 126.1, 130.6, 160.2 (4-OCH₃-C₆H₄), 137.8 (C8a), 141.9 (C4), 145.2 (C5), 153.6 (C8), 163.2 (C2), 164.2 (<u>C</u>O₂H). **HRMS** (ESI+) *m/z* calcd for C₁₅H₁₁N₃O₅⁺ [M+H]⁺: 314.077, found 314.0743.

General method for the synthesis of 3-cyano-7-phenyl-5-substituted-pyrido[2,3-*d*]pyridazin-2,8-diones 7a-g

The compound **2** (1.0 mmol, 1.0 equiv.), phenylhydrazine (4.0 mmol, 4.0 equiv.) and *p*-toluenesulfonic acid (1.0 mmol, 1.0 equiv.) were dissolved in the solution of EtOH and MeCN (1:1 v/v). The mixture was stirred at 80 °C for 24 hours. The reaction mixture was then cooled in an ice bath, the precipitated solid was filtered, washed with cold ethanol (10 mL), and dried under reduced pressure to obtain the pure product without the need for further purification steps.

3-Cyano-5-(4-nitrophenyl)-7-phenyl-pyrido[2,3-d]pyridazin-2,8(1H,7H)-dione (**7a**): Yellow solid, yield: 70%, mp > 331.5 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 7.47 (*m*, 1H, C₆H₅), 7.54 (*m*, 2H, C₆H₅), 7.58 (*m*, 2H, 4-NO₂-C₆H₄), 7.64 (*m*, 2H, C₆H₅), 7.69 (*m*, 2H, 4-NO₂-C₆H₄), 8.38 (*s*, 1H, H4). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 111.4 (C3), 111.7 (CN), 114.9 (C4a), 125.7, 128.3, 128.7, 128.8, 129.3, 129.6, 133.2, 141.0 (4-NO₂-C₆H₄ and C₆H₅), 138.6 (C8a), 144.8 (C5), 146.2 (C4), 152.2 (C8), 158.6 (C2). HRMS (ESI+) *m/z* calcd for C₂₀H₁₁N₅O₄⁺ [M+H]⁺: 386.0884, found 386.0858. **3-Cyano-5-(4-bromophenyl)-7-phenyl-pyrido[2,3-d]pyridazin-2,8(1H,7H)-dione** (**7b**): Yellow solid, yield: 71%, mp > 350.0 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 7.46 (*t*, 1H, C₆H₅), 7.76 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.5 Hz), 7.67 (*m*, 2H, C₆H₅), 7.76 (*d*, 2H, 4-Br-C₆H₄, *J* = 8.5 Hz), 8.46 (*s*, 1H, H4), 13.34 (*ls*, 1H, NH). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 111.5 (C3), 111.6 (CN), 114.9 (C4a), 123.3, 131.5, 131.8, 132.5 (4-Br-C₆H₄), 125.7, 128.4, 128.8, 141.0, (C₆H₅), 138.6 (C8a), 143.9 (C5), 146.3 (C4), 152.2 (C8), 158.7 (C2). HRMS (ESI+) *m/z* calcd for C₂₀H₁₁BrN₄O₂⁺ [M+H]⁺: 419.0138, found 419.0187.

3-Cyano-5-(4-chlorophenyl)-7-phenyl-pyrido[2,3-*d***]pyridazin-2,8(1***H*,*7H***)-dione** (**7c**): Yellow solid, yield: 66%, mp > 350.0 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 7.46 (*t*, 1H, C₆H₅, *J* = 7.4 Hz), 7.54 (*t*, 2H, C₆H₅, *J* = 7.8 Hz), 7.65 (*m*, 6H, 4-Cl-C₆H₄ and C₆H₅), 8.45 (*s*, 1H, H4), 13.32 (*ls*, 1H, NH). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 111.5 (C3), 111.7 (CN), 114.9 (C4a), 125.7, 128.4, 128.8,

128.9, 131.3, 132.1, 134.6, 141.0 (4-Cl-C₆H₄ and C₆H₅), 138.6 (C8a), 143.8 (C5), 146.3 (C4), 152.3 (C8), 158.7 (C2). **HRMS** (ESI+) *m/z* calcd for C₂₀H₁₁ClN₄O₂⁺ [M+H]⁺: 375.0643, found 375.0643.

3-Cyano-5-(4-fluorophenyl)-7-phenyl-pyrido[2,3-*d***]pyridazin-2,8(***1H,7H***)-dione** (7d): Yellow solid, yield: 60%, mp > 330.0 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 7.40 (*dd*, 2H, 4-F-C₆H₄, *J* = 8.9, 8.9 Hz), 7.47 (*t*, 1H, C₆H₅, *J* = 7.4 Hz), 7.55 (*t*, 2H, C₆H₅, *J* = 7.8 Hz), 7.69 (*m*, 4H, 4-F-C₆H₄ and C₆H₅), 8.32 (*s*, 1H, H4), 13.35 (*ls*, 1H, NH). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 111.5 (C3), 111.8 (CN), 114.9 (C4a), 115.8 (*d*, J²_{C-F} = 21.9 Hz, 4-F-C₆H₄), 125.7, 128.4, 128.8, 141.0 (C₆H₅), 129.8 (*d*, J⁴_{C-F} = 3.2 Hz, 4-F-C₆H₄), 131.8 (*d*, J³_{C-F} = 8.7 Hz, 4-F-C₆H₄), 138.6 (C8a), 144.0 (C5), 146.3 (C4), 152.3 (C8), 158.7 (C2), 162.9 (*d*, J¹_{C-F} = 246.9 Hz, 4-F-C₆H₄). HRMS (ESI+) *m/z* calcd for C₂₀H₁₁FN₄O₂⁺ [M+H]⁺: 359.0939, found 359.0933.

3-Cyano-5,7-diphenyl-pyrido[**2**,**3**-*d*]**pyridazin-2,8**(*1H*,*7H*)-dione (**7e**): Yellow solid, yield: 60%, mp > 313.2 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 7.47 (*t*, 1H, C₆H₅, *J* = 7.4 Hz), 7.56 (*m*, 5H, C₆H₅ – A and B), 7.64 (*m*, 2H, C₆H₅ - B), 7.69 (*m*, 2H, C₆H₅ - A), 8.38 (*s*, 1H, H4), 13.34 (*ls*, 1H, NH). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 111.4 (C2), 111.7 (CN), 114.9 (C4a), 125.6, 128.3, 128.7, 128.8, 129.3, 129.6, 133.2, 141.0 (C₆H₅ – A and B), 138.6 (C8a), 144.8 (C5), 146.2 (C4), 152.2 (C8), 158.6 (C2). HRMS (ESI+) *m/z* calcd for C₂₀H₁₂N₄O₂⁺ [M+H]⁺: 341.1033, found 341.1060.

3-Cyano-5-(4-methylphenyl)-7-phenyl-pyrido[2,3-*d*]**pyridazin-2,8**(*1H*,*7H*)-dione (**7f**): Yellow solid, yield: 51%, mp > 328.4 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 2.40 (*s*, 3H, CH₃), 7.37 (*d*, 2H, C₆H₅, *J* = 7.9 Hz), 7.46 (*m*, 1H, C₆H₅), 7.53 (*m*, 4H, 4-CH₃-C₆H₄ and C₆H₅), 7.67 (*m*, 2H, 4-CH₃-C₆H₄), 8.36 (*s*, 1H, H4), 13.27 (*ls*, 1H, NH). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 20.9 (CH₃), 111.4 (C2), 111.7 (CN), 114.9 (C4a), 125.7, 128.3, 128.8, 129.3, 129.4, 130.4, 139.3, 141.1 (4-CH₃-C₆H₄ and C₆H₅), 138.6 (C8a), 144.8 (C5), 146.3 (C4), 152.2 (C8), 158.7 (C2). HRMS (ESI+) *m/z* calcd for C₂₁H₁₄N₄O₂⁺ [M+H]⁺: 355.1190, found 355.1162.

3-Cyano-5-(4-methoxyphenyl)-7-phenyl-pyrido[2,3-*d*]**pyridazin-2,8**(*1H*,*7H*)-dione (**7g**): Yellow solid, yield: 50%, mp: 329.1-331.1 °C. ¹H NMR (500.13 MHz, DMSO-*d*₆) δ 3.84 (*s*, 3H, OCH₃), 7.11 (*d*, 2H, C₆H₅, *J* = 8.8 Hz), 7.45 (*m*, 1H, C₆H₅), 7.55 (*m*, 4H, 4-OCH₃-C₆H₄ and C₆H₅), 7.68 (*d*, 2H, 4-OCH₃-C₆H₄, *J* = 7.4 Hz), 8.38 (*s*, 1H, H4). ¹³C NMR (125.77 MHz, DMSO-*d*₆) δ 55.8 (OCH₃), 111.8 (C2), 112.2 (CN), 114.7 (C4a), 115.4, 125.9, 126.1, 128.8, 129.2, 131.3, 141.6, 160.8 (4-OCH₃-C₆H₄ and C₆H₅), 139.0 (C8a), 145.0 (C5), 146.8 (C4), 152.6 (C8), 159.2 (C2). HRMS (ESI+) *m/z* calcd for C₂₁H₁₄N₄O₃⁺ [M+H]⁺: 371.1139, found 371.1108.

Figure S3 – ¹H NMR spectrum of compound **4b** in DMSO- d_6 at 500.13 MHz

_CN

O

_CN

C

Figure S17 – ¹H NMR spectrum of compound **5b** in DMSO- d_6 at 300.06 MHz

Figure S19 – ¹H NMR spectrum of compound **5c** in DMSO- d_6 at 300.06 MHz

Figure S21 – ¹H NMR spectrum of compound **5d** in DMSO- d_6 at 300.06 MHz

Ò

S31

S32

S34

S36

,CO₂H

O

20

S50

,∕CN

Ò

S62

Figure S55 – ¹H NMR spectrum of compound **7g** in DMSO- d_6 at 500.13 MHz

Anti-inflammatory Activity

Mouse ear edema assay

Male Swiss mice weighing between 20 and 30 grams were used in this study. The animals were supplied by the Central Bioterio of State University of Maringá and were housed in the vivarium of the Laboratory of Inflammation at the same institution. They were maintained under controlled conditions, including a temperature of 22°C and had unrestricted access to water and food. The experimental protocol received approval from the Ethics Committee for Animal Experimentation at State University of Maringá (ECAE/UEM 4846281017).

Ear edema was induced by topically applying croton oil (CO, 200 µg per ear), previously diluted in a 70% acetone solution (vehicle), to the inner part of the left ear of the mice. In the right ear, only the vehicle was applied as a noninflamed control. After CO application, the animal groups (n = 7/group) received (*i*) 20 µl of 70% acetone (inflamed control), (*ii-iii*) 20 µL of the tested compounds at concentrations of 1.25 or 0.625 mg per ear, diluted in a 70% acetone solution (acetone/water 7:3 v/v - vehicle), or (*iv*) indomethacin (1 mg/ear, used as reference antiinflammatory drug) diluted in 70% acetone on the left ear. Higher doses of the tested compounds were not tested due to the limited solubility. After 6 hours, the animals (*n* total = 49) were anesthetized, sacrificed, and their ears were sectioned into 6.0 mm diameter disks, which were then weighed (mg). Equation 1 was used to calculate the percentage of edema inhibition.

Equation 1.

$$inhibition (\%) = \frac{left ear weight_{inflamed control} - left ear weight_{treated}}{left ear weight_{inflamed control} - right ear weight_{non-inflamed control}} x \ 100$$

The data were subject to GraphPad Prism software (version 5.0) and statistically analyzed using analysis of variance (ANOVA) followed by Tukey's test. The results for ear edema values were presented as the mean \pm standard error of the mean (SEM). A significance level of p < 0.05 was considered statistically significant.

Cytotoxicity assay

For cytotoxicity testing in fibroblasts (ATCC[®] CCL-1, Manassas, USA), cells were prepared at a concentration of 2.5×10^5 cells/mL in DMEM medium supplemented with 10% FBS. They were added to 96-well plates, incubated at 37 °C in a 5% CO₂ atmosphere for 24 hours to achieve confluence. After incubations, cells were then treated or not with different compound concentrations (ranging from 100 to 1000 μ M) diluted in DMEM for 72 hours. For cytotoxicity

testing in macrophages (TIB-67; American Type Culture Collection, Manassas, VA, USA), cells were prepared at a concentration of 5×10^5 cells/mL in RPMI medium supplemented with 10% FBS. They were added to 96-well plates, incubated at 37 °C in a 5% CO₂ atmosphere for 24 hours to achieve confluence. After incubation, cells were treated or not with different compound concentrations (ranging from 100 to 1000 μ M) diluted in RPMI for 48 hours. After treatment, the medium was removed, and cells were incubated with MTT (2 mg/mL) for 4 hours. Then, DMSO was added for solubilization of the formazan, and the absorbance was analyzed using a microplate reader (BIO-TEK Power WaveXS spectrophotometer) at 492 nm. The percentage of viable cells was calculated in relation to the control to determine the cytotoxic concentration that affects 50% of the cells (CC₅₀).

In vitro COX-1/COX-2 inhibition assay

The compound **7c** was assessed for its ability to inhibit human recombinant cyclooxygenase-2 (COX-2) and ovine cyclooxygenase-1 (COX-1) using a cyclooxygenase inhibitor screening assay kit (catalogue 560131, Cayman Chemical, Ann Arbor, MI, USA) following the manufacturer's suggested procedure. The absorbance of the 96-well plate was measured at 405 nm using a microplate reader (Asys Expert Plus, Biochrom, Berlin, Germany). The percentage of inhibition of the compound at two different concentrations (1.95 and 31.25 μ M) was determined by identifying the %B/B0 (% Bound/Maximum Bound) on the standard curve (y = -12.24ln(x) + 114.88; R² = 0.9957) and reading the corresponding values.

Docking Molecular

The crystal structure of human COX-2 bounded to rofecoxib encoded by PDB ID: 5KIR³ and the human COX-1⁴ bounded to Indomethacin-(R)-alpha-ethyl-ethanolamide with PDB ID: 2OYE were downloaded from Protein Data Bank (PDB), before to perform the docking studies.

Docking protocol into the COX-2 active site was validated by redocking the rofecoxib cocrystallized and the docked pose was compared with the initial pose using root mean square deviation (RMSD), which resulted in almost the same position of rofecoxib co-crystallized (RMSD = 0.9148 Å). For the COX-1, the docking protocol was also validated by redocking the indomethacin-(*R*)-alpha-ethyl-ethanolamide co-crystallized into the COX-1 active site. The docking pose was almost at the same position of crystallized ligand docked (RMSD = 0.8581 Å). The chemical structure **7c** was drawn and submitted to geometry optimization followed by conformational analysis, by the method of systematic search with torsion angle increment set of 30° in the range 0-360° using DFT B3LYP/6-311G* basis in the gas phase. All calculations were performed using Spartan'08 for Windows software. The lowest energy conformer for the chemical structure was saved in mol2 file before to use in docking studies.

Molecular docking studies were performed using iGemdock 2.159 and Gold software in which the individual binding pose of **7c** was assessed and submitted to dock in the active site of the COX-2 (PDB: 5KIR) and COX-1 (PDB: 2OYE). iGemdock docking calculations were performed at drug screening Docking Accuracy Setting with GA parameters set for population size, generation and number of solutions as 200, 70, and 3, respectively, and Gemdock score function of hydrophobic and electrostatic (1:1 preference). iGemdock software was used to infer the biological interactions, such as hydrogen bonding, van der Waals, and electrostatic, between biological receptor and the compound studied. GOLD molecular docking software used a genetic algorithm to perform an automatic search with the efficiency of 100% and a range of 100 to 12,500 operations. This software was applied to calculate the 100 possible conformations of the compounds which may bind to the active site of the protein. Default parameters such as population size of 100, selection pressure (1.1), number of islands of 1, niche size 2, operator weights for migrating 0, mutate, and crossover 100, were also applied. GOLD scoring functions used were the GoldScore and rescore with the ChemScore function.

Figure S57. (A) 3D docking diagram of Indomethacin (Gray sticks models) and COX-2 residues (Blue sticks models). (B) 2D mode of interaction of the compound Indomethacin into COX-2 analysed by Discovery Studio Client v20.1.0. (C) 3D docking diagram of Indomethacin (Gray sticks models) and COX-1 residues (Yellow sticks models). (D) 2D mode of interaction of the compound Indomethacin into COX-1 analysed by Discovery Studio Client v20.1.0.

Pocket	Amino acid	Interaction	Distance (Å)
Proximal binding	Val349	Pi-alkyl with indole ring; Alkyl with methyl	
	Tyr355	H-bond with O-H of the carboxyl group	2.61
	lle523	Pi-sigma with indole ring;	
		Alkyl with methoxy group	
	Ala527	Pi-alkyl with indole ring	
		Alkyl with methyl	
Central binding	Leu352	Pi-alkyl with indole ring	
	Leu384	Alkyl with Cl atom	
	Tyr385	Pi-Pi T-shaped with 4-chlorophenyl ring	
	Trp387	Pi with Cl atom	
	Phe518	Pi-alkyl with methoxy group	
	Phe381	Pi with Cl atom	
	Leu531	Alkyl with methyl	

Table S1 Docking	results of indomet	hacin into COX-1	(PDB: 20YE) "
------------------	--------------------	------------------	---------------

^{*a*} Binding score -61.84 Kcal/mol.

Pocket	Amino acid	Interaction	Distance (Å)
Proximal binding	Arg120	H-bond with O of methoxy group	2.33
	Val349	Pi-alkyl and alkyl with 4-chlorophenyl ring	
	Ser353	Pi-sigma with indole ring	
	Tyr355	Unfavorable interaction with indole ring	
	Val523	CH-bond with C(O) of benzoyl group	
Central binding	Leu352	Pi-alkyl and alkyl with 4-chlorophenyl ring	
	Phe518	H-bond with OH and C(O) of carboxyl group	2.08
	Tyr348	Pi with Cl atom	
	lle517	H-bond with C(O) of carboxyl group	2.73
COX-2 side	Arg513	CH-bond with OH of carboxyl group	
	His90	CH-bond with methoxy group	

Table S2 Docking results of indomethacin into COX-2 (PDB: 5KIR)^a

^{*a*} Binding score -60.05 Kcal/mol.

References

1) D. S. Gonçalves, S. M. de S. Melo, A. P. Jacomini, M. J. V. da Silva, K. E. Pianoski, F. Q. Ames, R.

P. Aguiar, A. F. Oliveira, H. Volpato, D. L. Bidóia, C. V. Nakamura, C. A. Bersani-Amado, D. F. Back,

S. Moura, F. R. Paula, F. A. Rosa, Bioorg. Med. Chem., 2020, 28, 115549.

2) F. A. Rosa, P. Machado, M. Rossatto, P. Vargas, H. G. Bonacorso, N. Zanatta, M. A. P. Martins, *Synlett*, 2007, **20**, 3165–3171.

3) B. J. Orlando, M. G. Malkowski, *Acta Crystallogr. Sect. F, Struct. Biol. Commun.,* 2016, **72**, 772–776.

4) C. A. Harman, M. V. Turman, K. R. Kozak, L. J. Marnett, W. L. Smith, R. M, Garavito, R.M., J. of Biol. Chem., 2007, **282**, 28096 – 28105.