Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2024

## **Supporting Information**

# Design, synthesis and biological evaluation of rhein-piperazine-furanone hybrids as potential anticancer agents

Yu He<sup>1</sup>, Si-Si Zhang<sup>1</sup>, Meng-Xue Wei \*

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China

\* Corresponding author.

E-mail address: weimengxue@nxu.edu.cn (M.-X. Wei)

<sup>1</sup> These authors contributed equally to this work.

#### **Table of Contents**

| General remark                                                     | S1 |
|--------------------------------------------------------------------|----|
| <sup>1</sup> H NMR, <sup>13</sup> C NMR and HRMS for hybrids 5a-5j | S2 |

#### **General remark**

Reagents and solvents were purchased from Adamas, Aldrich, and Energy Chemical, and used without further purification unless otherwise stated. The progress of the organic chemical reaction was monitored by thin-layer chromatography (TLC) (Qingdao Haiyang Chemical, China). <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer. The FT-IR spectra recorded on a Shimadzu FTIR-8400S Fourier Transform Infrared Spectrophotometer (400–4000 cm<sup>-1</sup>) with KBr pellets. High-resolution mass spectrums were recorded on a Thermo Fisher LTQ Orbitrap XL. The bioassays were carried out by Wuhan Biofavor Biotech Service Co., Ltd.

### <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS for hybrids 5a–5j

zss-326-H





5a





| 192.15 | 180.53 | 167.66<br>167.33<br>162.52<br>162.39 | 154.90 | 143.21<br>137.67<br>132.94 | 124.99<br>122.47<br>120.22<br>117.72<br>116.31<br>116.31<br>115.35 | 97.12 | 38.87 | 81.11<br>77.47<br>77.16<br>76.84 | 47.96<br>47.35<br>42.26 | 33.73<br>31.51 | 25.11<br>22.57<br>22.17<br>21.09<br>15.66 |
|--------|--------|--------------------------------------|--------|----------------------------|--------------------------------------------------------------------|-------|-------|----------------------------------|-------------------------|----------------|-------------------------------------------|
| Ï      |        | $\vee$ $\vee$                        |        |                            |                                                                    | Ì     |       |                                  |                         |                |                                           |





HRMS spectrum of 5a



zss-324-H

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of **5b** 



<sup>&</sup>lt;sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **5b** 



HRMS spectrum of 5b





**—** 12 11 10 9 5 2 8 7 6 3 1 0 ppm 0.93 0.97 1.13 1.09 1.01 1.01 1.15 3.06 1.97 1.05 0.97 0.93 0.86 **9.00** 

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of **5c** 



-----

| 192.23 | 180.61 | 168.12<br>167.38<br>162.58<br>162.45<br>157.59 | 143.23<br>137.71<br>133.96<br>133.01 | 125.03<br>122.51<br>120.27<br>117.76<br>116.37<br>115.41 | 98.12 | 81.03<br>77.48<br>77.16.84<br>75.60<br>75.60 | 48.01<br>47.52<br>41.80           | 33.77<br>31.56 | 25.15<br>22.61<br>22.21<br>21.12<br>15.71 |
|--------|--------|------------------------------------------------|--------------------------------------|----------------------------------------------------------|-------|----------------------------------------------|-----------------------------------|----------------|-------------------------------------------|
|        |        | $\vee \vee$                                    | $    \rangle$                        | //                                                       |       |                                              | $\langle \rangle \langle \rangle$ |                | $\mathbb{N}/\mathbb{N}$                   |



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **5**c



HRMS spectrum of 5c



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of **5d** 



<sup>&</sup>lt;sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **5d** 



HRMS spectrum of 5d

zss-318-H



zss-318-C



Т ..... 0 ppm <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **5e** 



HRMS spectrum of 5e









HRMS spectrum of 5f







<sup>&</sup>lt;sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **5**g



HRMS spectrum of 5g





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of **5h** 

ppm



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **5h** 

-----

ppm



HRMS spectrum of 5h

zss-315-H



zss-315-C





HRMS spectrum of 5i

zss-320-H





<sup>&</sup>lt;sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectrum of **5**j

