Supporting Information

Highly potent and selective phosphatidylinositol 4-kinase IIIß inhibitors as broad-spectrum anti-rhinoviral agents

Avinash G Vishakantegowda^{a,b,1}, Dasom Hwang^{a,c,1}, Prashant Chakrasali^a, Eunhye Jung^a, Joo-Youn Lee^a, Jin Soo Shin^{a,*}, Young-Sik Jung^{a,b,*}

 ^a Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
^b Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
^c Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea

* Corresponding authors: Young-Sik Jung (ysjung@krict.re.kr), Jin Soo Shin (jsshin@krict.re.kr)

¹ These authors contributed equally to this work.

Spectral Copies of ¹ H NMR of Compounds	S1
Spectral Copies of ¹³ C NMR of Compounds	S2
Spectral Copies of HRMS of Compounds	S3
Antiviral activity of 7f against coronavirus	
Kinase Assay	
Kinase Panel Assay	S6

Abbreviations: hRVs, human rhinoviruses; PI4KIII β , phosphatidylinositol-4-kinase III β ; EC₅₀, 50% effective concentration; CC₅₀, 50% cytotoxic concentration; SI, selectivity index; MOI, multiplicity of infection; SD, standard deviation; DMEM, Dulbecco's modified eagle's medium; TCID₅₀, 50% tissue culture infectious dose

S1. Spectral Copies of ¹H NMR of Compounds

¹H NMR spectrum of 2 (KR-27282)

¹H NMR spectrum of **3** (**KR-27222**)

¹H NMR spectrum of 4 (KR-27223)

¹H NMR spectrum of **5a** (**KR-27320**)

¹H NMR spectrum of **5b** (**KR-27287**)

¹H NMR spectrum of 5c (KR-27292)

¹H NMR spectrum of 5d (KR-27288)

¹H NMR spectrum of 5e (KR-27289)

¹H NMR spectrum of **5f** (**KR-27357**)

¹H NMR spectrum of **5h** (**KR-27291**)

¹H NMR spectrum of 5i (KR-27318)

¹H NMR spectrum of 5j (KR-27321)

¹H NMR spectrum of 5k (KR-27356)

¹H NMR spectrum of **5l** (**KR-27358**)

¹H NMR spectrum of 7a (KR-27336)

¹H NMR spectrum of **7b** (**KR-27376**)

¹H NMR spectrum of **7c** (**KR-27377**)

¹H NMR spectrum of **7d** (**KR-27374**)

¹H NMR spectrum of 7e (KR-27375)

¹H NMR spectrum of **7f** (**KR-27370**)

S2. Spectral Copies of ¹³C NMR of Compounds

13C NMR spectrum of **2** (**KR-27282**)

13C NMR spectrum of 3 (KR-27222)

13C NMR spectrum of 4 (KR-27223)

13C NMR spectrum of **5a** (**KR-27320**)

13C NMR spectrum of **5c** (**KR-27292**)

13C NMR spectrum of 5d (KR-27288)

13C NMR spectrum of **5e** (**KR-27289**)

13C NMR spectrum of **5f** (**KR-27357**)

13C NMR spectrum of **5g** (**KR-27319**)

13C NMR spectrum of 5h (KR-27291)

13C NMR spectrum of **5l** (**KR-27358**)

13C NMR spectrum of 7a (KR-27336)

13C NMR spectrum of 7b (KR-27376)

13C NMR spectrum of 7c (KR-27377)

13C NMR spectrum of 7d (KR-27374)

13C NMR spectrum of 7e (KR-27375)

S3. Spectral Copies of HRMS of Compounds

MS spectrum of **2** (**KR-27282**)

MS spectrum of **3** (**KR-27222**)

MS spectrum of 4 (KR-27223)

MS spectrum of 5a (KR-27320)

MS spectrum of **5b** (**KR-27287**)

MS spectrum of 5c (KR-27292)

MS spectrum of 5d (KR-27288)

MS spectrum of 5e (KR-27289)

MS spectrum of 5f (KR-27357)

MS spectrum of 5g (KR-27319)

MS spectrum of 5h (KR-27291)

MS spectrum of 5i (KR-27318)

MS spectrum of 5j (KR-27321)

MS spectrum of 5k (KR-27356)

MS spectrum of 5l (KR-27358)

MS spectrum of 6 (KR-27335)

MS spectrum of 7a (KR-27336)

MS spectrum of 7b (KR-27376)

MS spectrum of 7c (KR-27377)

MS spectrum of 7d (KR-27374)

MS spectrum of 7e (KR-27375)

MS spectrum of 7f (KR-27370)

S4. Antiviral activity of 7f against coronavirus^a

Virus	Cells	$\mathrm{CC}_{50}(\mu\mathrm{M})^b$	EC ₅₀ (μM) ^c	SId
Alpha coronavirus				
HCoV-229E	MRC5	5.8	>5.8	-
HCoV-NL63	LLC-MK2	>100	>100	-
FIPv	CRFK	>100	>100	-
Beta Coronavirus				
HCoV-OC43	MRC5	5.8	>5.8	-
SARS-CoV-2	Vero	>100	>100	-

Table.

^{*a*}All data were obtained from at least two independent experiments, and the mean values \pm standard deviations are listed. ^{*b*}CC₅₀: Cytotoxic concentration (μ M) for 50% cell survived, measured by MTT assay. ^{*c*}EC₅₀: Effective concentration (μ M) for 50% inhibition of each virus species, measured by MTT assay. ^{*d*}SI: Selectivity index calculated using CC₅₀/EC₅₀. ^{*e*}Not calculated because the EC₅₀ was higher than CC₅₀

S5. Kinase assay

Figure. GST-PI4KIII α , β (Invitrogen, Waltham, MA, USA), and PI:PS lipid kinase substrate (Invitrogen) were diluted in Kinase buffer T (Invitrogen). The enzymatic activity of PI4Ks was determined using an ADP-Glo kinase assay kit. Dose-responses of PI4KIII α (open triangle) and PI4KIII β (black circle) in the presence of serially diluted concentrations of **7f** (A) and enviroxime (B). Data represent means (±SD) of at least two dependent experiments performed in duplicate.

S6. Kinase panel assay

(A)

KR-27370 @ 1 μ M, Kinase panel assay (2)

KR-27370 @ 1μ M, Kinase panel assay (3)

KR-27370 @ 1μ M, Kinase panel assay (4)

KR-27370 @ 1μ M, Kinase panel assay (5)

Figure. (A) 7f was tested 435 protein kinases analysis by Eurofins. A Results of 30% or below was established as an inhibitor of the test kinases (PI3KC2 α , PI3KC2 γ). (B) 7f was tested 15 protein kinases analysis by Carna biosciences. A Results of 70% or above was established as an inhibitor of the test kinases (PIK3CD/PIK3R1).