Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Coumarin–furo[2,3-d]pyrimidone hybrid molecules targeting human liver cancer cells: Synthesis, anticancer effect, EGFR inhibition and molecular docking studies

Tianshuai Wang ^{a, b, †}, Yumeng Gao ^{a, †}, Fengxu Wu , Lun Luo ^{a, b,†}, Junkai Ma ^{a, b, *}, Yanggen Hu ^{a, b, *}

^a School of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China

^b Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China

[†]These authors contributed equally to this work.

* Corresponding author. Tel.: +86-719-8891150

Yang-Gen Hu, Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China. Email: huyg@hbmu.edu.cn

Junkai Ma, Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China. Email: majunkai17@hbmu.edu.cn

Contents:

- 1.¹H NMR of Compounds 6a-n
- 2.¹³C NMR of Compounds 6a-n
- 3. ESI-MS of Compounds 6a-n
- 4. ¹H NMR of Compounds 10a-i
- 5. ¹³C NMR of Compounds 10a-i
- 6. ESI-MS of Compounds 10a-n

¹H NMR of Compounds 6a-n (Fig. S1-14)

Fig.S1: ¹H NMR spectrum of compound 6a

Fig.S2: ¹H NMR spectrum of compound 6b

Fig.S3: ¹H NMR spectrum of compound 6c

Fig.S4: ¹H NMR spectrum of compound 6d

Fig.S5: ¹H NMR spectrum of compound 6e

Fig.S6: ¹H NMR spectrum of compound 6f

Fig.S7: ¹H NMR spectrum of compound 6g

Fig.S8: ¹H NMR spectrum of compound 6h

Fig.S10: ¹H NMR spectrum of compound 6j

Fig.S11: ¹H NMR spectrum of compound 6k

Fig.S12: ¹H NMR spectrum of compound 6l

Fig.S13: ¹H NMR spectrum of compound 6m

Fig.S14: ¹H NMR spectrum of compound 6n

¹³C NMR of Compounds 6a-n (Fig. S15-28)

Fig.S15: ¹³C NMR spectrum of compound 6a

Fig.S16: ¹³C NMR spectrum of compound 6b

Fig.S17: ¹³C NMR spectrum of compound 6c

Fig.S18: ¹³C NMR spectrum of compound 6d

Fig.S20: ¹³C NMR spectrum of compound 6f

Fig.S21: ¹³C NMR spectrum of compound 6g

Fig.S23: ¹³C NMR spectrum of compound 6i

Fig.S25: ¹³C NMR spectrum of compound 6k

Fig.S26: ¹³C NMR spectrum of compound 61

Fig.S27: ¹³C NMR spectrum of compound 6m

Fig.S28: ¹³C NMR spectrum of compound 6n

ESI-MS of Compounds 6a-n (Fig. S29-39)

Fig.S29: ESI-MS spectrum of compound 6n

Fig.S30: ESI-MS spectrum of compound 6m

Fig.S31: ESI-MS spectrum of compound 6a

Fig.S32: ESI-MS spectrum of compound 6j

Fig.S33: ESI-MS spectrum of compound 6h

hsj-05_20191127051841#16 RT: 0.08 AV: 1 NL: 1.51E7 T: +cESIQ1MS[300.000-600.000]

hsj-06_20191127052851#3 RT: 0.01 AV: 1 NL: 2.12E7 T: +cESIQ1MS[300.000-500.000]

Fig.S35: ESI-MS spectrum of compound 6b

Fig.S36: ESI-MS spectrum of compound 6i

Fig.S37: ESI-MS spectrum of compound 6g

hsj-09_20191209033721#49 RT: 0.24 AV: 1 NL: 4.41E7 T: +cESIQ1M6[200.000-500.000]

hsj-10_20191209035419#1 RT: 0.00 AV: 1 NL: 5.13E7 T: +cESI Q1MS [200.000-500.000]

¹HNMR of Compounds 10a-i (Fig. S40-48)

Fig.S40: ¹H NMR spectrum of compound 10a

Fig.S41: ¹H NMR spectrum of compound 10b

Fig.S42: ¹H NMR spectrum of compound 10c

Fig.S43: ¹H NMR spectrum of compound 10d

Fig.S44: ¹H NMR spectrum of compound 10e

Fig.S45: ¹H NMR spectrum of compound 10f

Fig.S46: ¹H NMR spectrum of compound 10g

Fig.S47: ¹H NMR spectrum of compound 10h

Fig.S48: ¹H NMR spectrum of compound 10i

¹³C NMR of Compounds 10a-i (Fig. S49-56)

Fig.S49: ¹³C NMR spectrum of compound 10a

Fig.S50: ¹³C NMR spectrum of compound 10b

Fig.S51: ¹³C NMR spectrum of compound 10c

Fig.S52: ¹³C NMR spectrum of compound 10d

Fig.S53: ¹³C NMR spectrum of compound 10e

Fig.S55: ¹³C NMR spectrum of compound 10h

Fig.S56: ¹³C NMR spectrum of compound 10i

ESI-MS of Compounds 10a-n (Fig. S57-71)

Fig.S57: HRESI-MS spectrum of compound 10a

H-06 98 (0.563) 100-	528.1884	1: TOF MS ES+ 2.13e6
	550.1699	
~		
	551.1733	
342.1467	566.1428	
0 250 300 350 400 450 500	625.1308 663.4556 724.0126 784.9341 0 550 600 650 700 750 800	830.3731 850.1794 850 900 m/z

Fig.S58: HRESI-MS spectrum of compound 10b

Fig.S59: HRESI-MS spectrum of compound 10c

Fig.S60: ESI-MS spectrum of compound 10c

Fig.S61: ESI-MS spectrum of compound 10d

Fig.S62: ESI-MS spectrum of compound 10e

Fig.S63: ESI-MS spectrum of compound 10f

H-08 100-	89 (0.508)			528	8.1888							1	: TOF MS ES+ 2.72e6
8													
-													
					550.	1707							
-													
%													
-													
.													
						551.1738							
						566.14	145						
		342.	1469			567.1	459						
0	227.1578	338.3437	354.2851 393.2972	 510.1768	, I <u>.</u>	<u>l </u>	625	1321_642.0595	725.00	042	792.0187	842.2171	859.6985 m/z

Fig.S64: HRESI-MS spectrum of compound 10g

Fig.S66: ESI-MS spectrum of compound 10j

Fig.S67: HRESI-MS spectrum of compound 10i

Fig.S68: ESI-MS spectrum of compound 10i

Fig.S69: ESI-MS spectrum of compound 10k

H02_20191127055723 #76 RT: 0.19 AV: 1 NL: 1.39E6 T: +cESIQ1M6 [500.000-650.000]

Fig.S70: ESI-MS spectrum of compound 10m

8-_20200106040836#37 RT: 0.02 AV: 1 NL: 3.57E6 T: +cESIQ1MS[550.000-580.000]

Fig.S71: ESI-MS spectrum of compound 10n