Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Nitrogen-containing andrographolide derivatives with multidrug resistance reversal effects in cancer cells

Joana Ribeiro^a, Nikoletta Szemerédi^b, Bruno M. F. Goncalves^a, Gabriella Spengler^b, Carlos A. M. Afonso^a, Maria-José U. Ferreira^{a,*}

 ^a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
^b Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary

*Corresponding Author: Maria-José Ferreira; E-mail: mjuferreira@ff.ulisboa.pt

Table of contents

1. NMR data of parental compound 1	S3
2. Representative ¹ H and ¹³ C NMR spectra	S5
3. Rhodamine-123 accumulation assay (compounds 1 – 25)	S15
4. Flow cytometry data	S18
5. Combination chemotherapy results	S73
6. Physicochemical properties	S74

1. NMR data of parental compound 1

White amorphous powder; ¹H-NMR (300 MHz, DMSO-d6) δ = 6.62 (1H, *td*, J = 6.8, 1.7 Hz, H-12), 5.70 (1H, *d*, J = 6.1 Hz, H-14-OH), 5.04 (1H, *d*, J = 4.9 Hz, H-3-OH), 4.91 (1H, *br* t, J = 6.1 Hz, H-14), 4.81 (1H, *br* s, H-17a), 4.63 (1H, *br* s, H-17b), 4.39 (1H, *dd*, J = 9.9, 6.1 Hz, H-15a), 4.12 (1H, *dd*, J = 7.5, 2.9 Hz, H-19-OH), 4.03 (1H, *dd*, J = 9.9, 2.1 Hz, H-15b), 3.84 (1H, *dd*, J = 11.0, 2.9 Hz, H-19a), 3.29-3.19 (2H, *m*, H-3 and H-19b), 2.46 (2H, *m*, H-11), 2.32 (2H, *m*, H-7), 1.95 (2H, *m*, H-2), 1.74 (2H, *m*, H-6), 1.63 (2H, *m*, H-1), 1.30 (1H, *m*, H-9), 1.20 (1H, *m*, H-5), 1.08 (3H, *s*, H-18), 0.66 (3H, *s*, H-20) ppm. ¹³C-NMR (75 MHz, CDCl₃) δ = 169.9 (C-16), 147.6 (C-12), 146.3 (C-8), 129.0 (C-13), 108.2 (C-17), 78.4 (C-3), 74.3 (C-15), 64.5 (C-14), 62.6 (C-19), 55.5 (C-9), 54.4 (C-5), 42.3 (C-4), 38.6 (C-10), 37.5 (C-7), 36.5 (C-1), 27.9 (C-2), 23.9 (C-6 and C-11), 23.0 (C-18), 14.7 (C-20) ppm. ESI-MS (positive mode) m/z (rel. Int) 351 [M + H]⁺. These data are in agreement with the literature.^{1,2}

Figure S1: ¹H-NMR spectrum of compound **1** (300 MHz, DMSO-d6)

Figure S2: ¹³C-NMR spectrum of compound 1 (75 MHz, DMSO-d6)

2. Representative 1H and 13C NMR spectra

Figure S3: ¹H-NMR spectrum of compound 2 (300 MHz, CDCl₃)

Figure S4: ¹³C-APT NMR spectrum of compound 2 (75 MHz, CDCl₃)

Figure S5: ¹H-NMR spectrum of compound 4 (300 MHz, CDCl₃)

Figure S6: ¹³C-APT NMR spectrum of compound 4 (75 MHz, CDCl₃)

Figure S7: 1 H-NMR spectrum of compound 5 (300 MHz, CDCl₃)

Figure S9: ¹H-NMR spectrum of compound 7 (300 MHz, CDCl₃)

Figure S11: NOESY spectrum and expansion of compound 7 (300 MHz, CDCl₃)

Figure S12: ¹H-NMR spectrum of compound 8 (300 MHz, CDCl₃)

S11

Figure S14: NOESY spectrum and expansion of compound 8 (500 MHz, CDCl₃)

Figure S15: ¹H-NMR spectrum of compound 10 (300 MHz, CDCl₃)

Figure S16: ¹³C-APT NMR spectrum of compound 10 (75 MHz, CDCl₃)

Figure S17: ¹H-NMR spectrum of compound 12 (300 MHz, CDCl₃)

Figure S19: ¹H-NMR spectrum of compound 17 (300 MHz, CDCl₃)

Figure S21: ¹H-NMR spectrum of compound 21 (300 MHz, CDCl₃)

S15

Figure S22: ¹³C-APT NMR spectrum of compound 21 (75 MHz, CDCl₃)

3. Rhodamine-123 accumulation assay (compounds 1-25)

Compound	R	Conc. (μM)	FAR ^a	FSC [♭]	SSC ^c	FL-1 ^d
PAR	-	-	-	2362	941	76.70
MDR	-	-	-	2444	1063	2.13
		2	0.96	2343	1326	1.32
1	Andrographolide	20	0.82	2242	1355	1.12
	Triacetyl	2	1.95	1979	1395	2.68
2	Andrographolide	20	38.65	2367	1279	53.10
2	SUNT N N 1' N 5'	0.2	2.34	2461	1124	16.00
5	2' 4' Br	2	16.12	2413	1162	110.00
	4' JIG' O	2	1.21	2307	1037	1.66
4	s ¹ , N H J C 3 4'	20	64.99	2307	1037	68.10
5	3' NH ₂ 5'	0.2	0.48	2501	1131	3.30
5	5 ³ N H 2' 4' H O	2	0.48	2432	1116	3.28
	4' Cl	0.2	1.56	2469	1131	10.60
6	5' N N N 1' 2' 3' 4'	2	3.36	2431	1144	22.90
	4' CF ₃	0.2	1.63	2469	1129	11.10
7	5' N N 1' 2' 3' 4'	2	5.19	2433	1148	35.40
	4' CF ₃	0.2	0.37	2463	1126	2.54
8	5' N N N 1' 2' 3' 4'	2	2.27	2413	1210	15.50
	N	0.2	0.49	2472	1124	3.36
9	5' 5' N H O O	2	0.32	2426	1191	2.21
10	5 H 5'4'	0.2	2.32	2503	1092	15.80
	5" N 1' 2' 3' H 0	2	4.28	2506	1248	29.20
11		0.2	0.54	2500	1106	3.67

Table S1: P-pg inhibitory activity of compounds 1 – 25 on MDR-transfected mouse T-lymphoma cells.

1.89	2448	1179	12.90
2.00			

Table S1: Continuation

Compound	R	Conc. (µM)	FAR ^a	FSC [♭]	SSC ^c	FL-1 ^d
12		2	0.88	2299	1013	1.21
	N H 2' S	20	41.85	2271	1012	57.50
	ъ Н ^{2'}	2	58.18	2142	1275	112.00
13	S ² N H S	20	61.30	2092	1296	118.00
	к ² Н Н 3 ³	2	1.20	2289	1002	1.65
14	$\begin{array}{c} H \\ H \\ S \\ 3' \end{array}$	20	43.52	2192	984	59.80
	S ² N N N N N N N N N N N N N N N N N N N	2	18.13	2225	1138	34.90
15	$\begin{array}{c c} H \\ S \\ S \\ 4' \end{array}$	20	64.94	2155	1217	125.0
	N N N N N N N N N N N N N N N N N N N	2	1.37	2216	1128	2.63
16		20	50.23	2177	1163	96.70
17	S 3' 4'	2	7.90	2226	1202	15.20
		20	55.07	2154	1144	106.00
	S 3' 4' 5'	2	1.06	2302	1026	1.46
18		20	37.12	2247	1037	51.50
19	S 3 4'	2	18.86	2154	1264	36.30
		20	60.26	2067	1357	116.00
20	p ¹ ,	2	61.30	2160	1271	118.00
20		20	79.48	2107	1300	153.00
21	5 ³ N H Y Z 4 ⁴ S 3 ³ S NO ₂	2	27.27	2226	1167	52.50
21		20	51.95	2261	400	100.00
22	^{2'} N H S 3' 6' S 3' 4'	2	1.03	2319	1000	1.41
		20	79.33	2255	1060	109.00
23	31 ²⁵ N N N N N N N N N N N N N N N N N N N	2	1.71	2260	1120	3.30
		20	57.14	2199	1200	110.0
24		2	14.29	2449	493	27.50

2

Table S1: Continuation

Compound	R	Conc. (µM)	FAR ^a	FSC⁵	SSC ^c	FL-1 ^d
25	$\begin{array}{c} H \\ H \\ H \\ S \\$	2	1.27	2164	1397	2.44
		20	31.12	2099	1300	59.90
Verapamil	-	20	5.14	2349	1222	9.90
DMSO	-	2%	0.96	2113	1230	1.85

^aFAR (fluorescence activity ratio) values were determined by using the equation shown in section 4.5. Verapamil at 2 and 20 μ M was used as positive control. DMSO 2% was used as negative control; ^bFSC: Forward scatter count of cells in the sample; ^cSSC: Side scatter count of cells in the sample; ^dFL-1: Mean fluorescence intensity of the cells.

4. Flow cytometry data

Figure S23: Flow cytometry data for sensitive L5178Y mouse T-lymphoma cells (PAR)

Figure S24: Flow cytometry data for resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S25: Flow cytometry data for compound **1** tested at 2 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S26: Flow cytometry data for compound 1 tested at 20 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S27: Flow cytometry data for compound 2 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S28: Flow cytometry data for compound 2 tested at 20 μ M in resistant human ABCB1gene transfected L5178Y subline (MDR)

Figure S29: Flow cytometry data for compound **3** tested at 0.2 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S30: Flow cytometry data for compound 3 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S31: Flow cytometry data for compound **4** tested at 2 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S32: Flow cytometry data for compound 4 tested at 20 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S33: Flow cytometry data for compound 5 tested at 0.2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S34: Flow cytometry data for compound **5** tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S35: Flow cytometry data for compound **6** tested at 0.2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S36: Flow cytometry data for compound 6 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S37: Flow cytometry data for compound **7** tested at 0.2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S38: Flow cytometry data for compound 7 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S39: Flow cytometry data for compound 8 tested at 0.2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S40: Flow cytometry data for compound 8 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S42: Flow cytometry data for compound 9 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S43: Flow cytometry data for compound 10 tested at 0.2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S44: Flow cytometry data for compound 10 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S45: Flow cytometry data for compound 11 tested at 0.2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S46: Flow cytometry data for compound 11 tested at 2 μ M in resistant human ABCB1gene transfected L5178Y subline (MDR)

Figure S47: Flow cytometry data for compound 12 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S48: Flow cytometry data for compound **12** tested at 20 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S49: Flow cytometry data for compound 13 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S50: Flow cytometry data for compound **13** tested at 20 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S51: Flow cytometry data for compound 14 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S52: Flow cytometry data for compound 14 tested at 20 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S53: Flow cytometry data for compound **15** tested at 2 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S54: Flow cytometry data for compound **15** tested at 20 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S55: Flow cytometry data for compound 16 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S56: Flow cytometry data for compound 16 tested at 20 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S57: Flow cytometry data for compound **17** tested at 2 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S58: Flow cytometry data for compound **17** tested at 20 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S59: Flow cytometry data for compound 18 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S60: Flow cytometry data for compound **18** tested at 20 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S61: Flow cytometry data for compound 19 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S62: Flow cytometry data for compound **19** tested at 20 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S63: Flow cytometry data for compound 20 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S64: Flow cytometry data for compound 20 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S65: Flow cytometry data for compound **21** tested at 2 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S66: Flow cytometry data for compound **21** tested at 20 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S67: Flow cytometry data for compound 22 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S68: Flow cytometry data for compound **22** tested at 20 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S69: Flow cytometry data for compound 23 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S70: Flow cytometry data for compound **23** tested at 20 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S71: Flow cytometry data for compound **24** tested at 2 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S72: Flow cytometry data for compound **24** tested at 20 μ M in resistant human *ABCB1*gene transfected L5178Y subline (MDR)

Figure S73: Flow cytometry data for compound 25 tested at 2 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S74: Flow cytometry data for compound **25** tested at 20 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S75: Flow cytometry data for verapamil tested at 20 μ M in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

Figure S75: Flow cytometry data for dimethylsulfoxide tested at 2 % in resistant human *ABCB1*-gene transfected L5178Y subline (MDR)

5. Combination chemotherapy results

Compound	Starting Conc. (μM)	Ratio*	R	CI at ED ₅₀	SD	Type of interaction
1	30	1:6.96	0.997	0.98	0.15	Nearly additive
2	38	1:71.41	1.0	1.60	0.21	Antagonism
3	24	1:44.56	1.0	0.21	0.12	Strong synergism
4	47	1:10.9	0.976	0.37	0.05	Synergism
5	11	1:2.55	0.998	0.71	0.11	Moderate synergism
6	18	1:16.72	0.995	0.55	0.11	Synergism
7	30	1:14.14	0.995	0.52	0.05	Synergism
8	24	1:5.45	0.993	0.56	0.80	Synergism
9	24	1:21.8	0.994	0.60	0.06	Synergism
10	30	1:14.14	0.997	0.60	0.04	Synergism
11	30	1:27.84	1.0	0.75	0.08	Moderate synergism

Table S2: Effect of compounds 1-11 in combination with doxorubicin on resistant human ABCB1-gene transfected L5178Y subline (MDR)

*Ratio: the applied combination and concentration of amine derivatives and doxorubicin (the best combination ratio between compound and doxorubicin). R: Linear Correlation Coefficient. CI at ED_{50} : combination index (CI) at the 50 % growth inhibition dose; CI < 0.1: very strong synergism; 0.1 < CI < 0.3: strong synergism; 0.3 < CI < 0.7: synergism; 0.7 < CI < 0.9: moderate to slight synergism; 0.9 < CI < 1.1: nearly additive; 1.10 < CI < 1.45: moderate antagonism; 1.45 < CI < 3.30: antagonism.

6. Physicochemical properties

	Descriptors						
Compound	Molecular weight (g/mol)	LogP	HBD	HBA	TPSA		
1	350.45	2.33	3	5	86.99		
2	476.56	3.53	0	8	105.2		
3	604.53	4.64	2	8	115.85		
4	612.71	4.35	2	10	138.49		
5	567.67	3.57	3	8	146.05		
6	587.10	4.59	2	8	120.03		
7	620.66	5.20	2	11	120.03		
8	620.66	4.92	2	11	120.03		
9	556.65	3.22	2	9	132.92		
10	542.62	3.61	2	9	133.17		
11	558.69	4.28	2	8	148.27		
12	521.67	3.25	3	7	147.08		
13	535.70	3.45	2	7	138.29		
14	563.75	4.25	3	7	147.08		
15	589.79	4.47	3	7	147.08		
16	620.80	3.28	3	9	159.55		

Table S3 - In silico molecular properties of compounds 1-25 and verapamil using theSwissADME predictive database.^{a.}

Table S3: Continuation

	Descriptors							
Compound	Molecular weight (g/mol)	LogP	HBD	HBA	TPSA			
17	583.74	4.41	3	7	147.08			
18	597.77	4.69	3	7	147.08			
19	597.77	4.79	3	7	147.08			
20	611.79	5.10	3	7	147.08			
21	628.74	3.78	9	3	192.90			
22	601.73	4.87	3	8	147.08			
23	597.77	4.60	3	7	147.08			
24	633.80	5.38	3	7	147.08			
25	687.73	3.91	3	8	160.22			
Verapamil	440.58	4.29	3	9	72.74			

Octanol-water partition coefficient (LogP); number of hydrogen bond acceptors (HBA); number of hydrogen bond donors (HBD); topological polar surface area (TPSA); Lipinski's rule of five: molecular weight < 500 Da; Log P < 5; HBA < 5; HBD < 10. A maximum of 1 violation is permitted.

Compound	Log S (mol/L)	Caco-2 Permeability (log Papp in 10 ⁻⁶ cm/S	Intestinal Absorption (%)	Fractional unbound (fu)	CNS permeability (logPS)	CYP3A4 inhibitor (Yes/No)	Hepato toxicity	AMES toxicity
1	-3.10	1.35	95.36	0.20	-2.47	No	No	No
2	-5.03	0.93	90.04	0.09	-2.59	Yes	No	No
3	-5.15	0.66	86.66	0.05	-2.74	Yes	Yes	No
4	-5.85	0.35	82.28	0	-3.03	Yes	Yes	No
5	-4.92	0.02	76.54	0.13	-2.84	Yes	Yes	No
6	-5.62	0.80	84.80	0	-2.65	Yes	No	No
7	-5.71	0.81	85.94	0	-2.64	Yes	Yes	No
8	-5.71	0.81	85.91	0	-2.63	Yes	Yes	No
9	-5.05	0.75	79.14	0.05	-2.95	Yes	Yes	No
10	-4.73	0.68	82.88	0.11	-2.90	Yes	Yes	No
11	-5.24	0.88	83.97	0	-2.76	Yes	Yes	No
12	-4.43	0.78	70.34	0.20	-3.07	No	No	No
13	-4.59	0.83	71.06	0.18	-3.02	No	Yes	No
14	-4.57	0.90	73.68	0.06	-2.81	No	Yes	No
15	-5.04	0.76	78.64	0.10	-2.90	No	Yes	No
16	-4.15	0.73	64.04	0.31	-3.39	No	Yes	No
17	-4.92	0.89	79.83	0.04	-2.68	No	Yes	No
18	-4.98	0.89	80.29	0.03	-2.63	No	No	No
19	-4.98	0.79	80.28	0.01	-2.63	No	Yes	No
20	-5.07	0.82	80.36	0.02	-2.64	Yes	No	No
21	-4.85	-0.27	76.62	0.06	-2.84	Yes	Yes	No
22	-4.92	0.89	80.17	0.05	-2.74	No	No	No
23	-5.32	0.87	77.41	-0.65	-2.76	No	Yes	No

Table S4: *In silico* pharmacokinetic (absorption, distribution, metabolism, and excretion) and toxicity parameters of compounds **1-25** and verapamil using pkCSM and SwissADME predictive databases.

Table S4: Continuation	S4: Continuation
------------------------	-------------------------

Compound	Log S (mol/L)	Caco-2 Permeability (log Papp in 10 ⁻⁶ cm/S	Intestinal Absorption (%)	Fractional unbound (fu)	CNS permeability (logPS)	CYP3A4 inhibitor (Yes/No)	Hepatotoxicity	AMES toxicity
24	-4.61	0.90	86.82	0.06	-2.46	Yes	No	No
25	-4.87	0.66	76.65	0.12	-2.98	No	Yes	No
Verapamil	-5.23	1.11	97.10	0.009	-2.58	Yes	No	No

Figure S76: Representative plots of Log P versus FAR values for tested compounds in ABCB1-transfected mouse T-lymphoma cells at (A) 2 μM (compounds 1-25) and (B) 20 μM (compounds 1, 2, 4 and 12-25).

Figure S77: Representative plots of molecular weight (MW) versus FAR values for tested in ABCB1-transfected mouse T-lymphoma cells at at (A) 2 μ M (compounds 1-25) and (B) 20 μ M (compounds 1, 2, 4 and 12-25).

Figure S78: Representative plots of H-bond donors (HBD) versus FAR values for tested compounds in ABCB1-transfected mouse T-lymphoma cells at at (A) 2 μM (compounds 1-25) and (B) 20 μM (compounds 1, 2, 4 and 12-25).

Figure S79: Representative plots of H-bond acceptors (HBA) versus FAR values tested compounds in ABCB1-transfected mouse T-lymphoma cells at at (A) 2 μ M (compounds 1-25) and (B) 20 μ M (compounds 1, 2, 4 and 12-25).

Figure S80: Representative plots of topological polar surface area (TPSA), versus FAR values tested compounds in ABCB1-transfected mouse T-lymphoma cells at at (A) 2 μM (compounds 1-25) and (B) 20 μM (compounds 1, 2, 4 and 12-25).

7. References

- 1 A. E. Owen, H. Louis, E. U. Ejiofor, W. Emori, T. E. Gber, I. Benjamin, C. R. Cheng, M. M. Orosun, L. Ling and A. S. Adeyinka, *Chem. Africa*, 2023, **6**, 2445–2461.
- 2 E. Villedieu-Percheron, V. Ferreira, J. F. Campos, E. Destandau, C. Pichon and S. Berteina-Raboin, *Foods*, 2019, **8**, 683–693.