ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) for Manuscript

Design, Quality and Validation of the EU-OPENSCREEN Fragment Library Poised to a High-Throughput Screening Collection

Xavier Jalencas,^{#a} Hannes Berg,^{#bc} Ludvik Olai Espeland,^{#de} Sridhar Sreeramulu,^{bc} Franziska Kinnen,^{bc} Christian Richter,^{bc} Charis Georgiou,^d Vladyslav Yadrykhinsky,^d Edgar Specker,^f Kristaps Jaudzems,^g Tanja Miletic,^f Robert Harmel,^f Phil Gribbon,^{hi} Harald Schwalbe,^{*bcj} Ruth Brenk,^{*dk} Aigars Jirgensons,^{*g} Andrea Zaliani,^{*hi} Jordi Mestres^{*al}

^a Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute, Parc de Recerca Biomèdica (PRBB), Doctor Aiguader 88, 08003 Barcelona, Spain; E-mail: jmestres@imim.es

^b Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany; E-mail: schwalbe@nmr.uni-frankfurt.de

^d Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5020 Bergen, Norway

^e Department of Chemistry, University of Bergen, Allégaten 41, 5007 Bergen, Norway

^f EU-OPENSCREEN ERIC, Robert-Rössle Straße 10, 13125 Berlin, Germany

^g Latvian Institute of Organic Synthesis, Aizkraules 21, Riga LV-1006, Latvia; E-mail: aigars@osi.lv

^h Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany; Email: andrea.zaliani@itmp.fraunhofer.de

ⁱ Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern Kai 7, 60590 Frankfurt, Germany

^j Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, United Kingdom; E-mail: harald.schwalbe@instruct-eric.org

^k Computational Biology Unit, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway; Email: ruth.brenk@uib.no

¹ Institut de Quimica Computacional i Catalisi, Facultat de Ciencies, Universitat de Girona, Maria Aurelia Capmany 69, 17003 Girona, Catalonia, Spain; E-mail: jordi.mestres@udg.edu

^c Chemical Biology, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany

Supplementary Table S1. The 10 most frequent functional groups present in bioactive small molecules described in medicinal chemistry literature and its relative frequency found in current ChEMBL actives (pChEMBL > 5.0) and EFSL fragments. The R symbol indicates aliphatic or aromatic carbon. The analysis was done using the code provided in Sanchez-Cruz *et al.*³

Supplementary Table S2. Structures of the 17 fragment hits from the BLI screening of the EFSL. Marked with a * are the 4 hits binding to FabF C164A with $K_D < 500 \mu$ M. Fragment hit EOS102727 (1) was repurchased for retesting and further validation using X-ray crystallography.

Supplementary Table S3. Structures of the 7 hits from the BLI screening of selected ECBL poised molecules. Fragment hits EOS69423 (2) and EOS21030 (3) were repurchased for retesting.

Supplementary Table S4. Data-collection and refinement statistics. Values in parentheses are for the highest resolution shell.

Supplementary Figure S1. Eight calculated descriptors comparing DSI-Poised, EFSL (EUOS) and FX2_BESSY Fragment Libraries

Supplementary Figure S2. Sensorgrams (left) and steady-state plots (right) for both FabF C164A (top) and w.t. (bottom) of the 17 fragment hits from the BLI screening of the EFSL. In bold, those samples with K_D values below 500 μ M.

Supplementary Figure S3. Sensorgrams (left) and steady-state plots (right) for both FabF C164A of the 7 hits from the BLI screening of of selected ECBL poised molecules.

Supplementary Figure S4. Steady-state plots in triplicate of repurchased material of hits 2 (top) and 3 (bottom). Bars indicate range of responses for the same concentration.

Supplementary Table S1. The 10 most frequent functional groups present in bioactive small molecules described in medicinal chemistry literature and its relative frequency found in current ChEMBL actives (pChEMBL > 5.0) and EFSL fragments. The R symbol indicates aliphatic or aromatic carbon. Cal and Car indicate links to an aliphatic and an aromatic carbon, respectively. The analysis was done using the code provided in Sánchez-Cruz *et al.*¹

Functional Group	Ertl et al. ^{2,3}	ChEMBL Actives	EU-OS FBS Fragments	Functional Group	Ertl et al. ^{1,2}	ChEMBL Actives	EU-OS FBS Fragments
R R R	40.2	41.9	32.3	R——Cl	19.6	18.7	4.2
R	38.8	40.4	16.8	Cal <mark>—OH</mark>	13.6	13.0	8.9
R	29.5	26.6	4.8	Car == 0	13.1	11.0	5.0
RF	23.1	22.8	12.4	R	12.2	9.3	0.3
RRR	19.6	18.2	23.3	Car OH	10.3	9.6	7.1

(1) Sánchez-Cruz, N.; Pilón-Jiménez, B. A.; Medina-Franco, J. L. Functional Group and Diversity Analysis of BIOFACQUIM: A Mexican Natural Product Database. *F1000Research* **2019**, *8*, Chem Inf Sci-2071.

(2) Ertl, P.; Altmann, E.; McKenna, J. M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. *J. Med. Chem.* **2020**, *63*, 8408-8418.

(3) Ertl, P.; Altmann, E.; Racine, S. The most common linkers in bioactive molecules and their bioisosteric replacement network. *Bioorg. Med. Chem.* **2023**, *81*, 117194.

Supplementary Table S2. Structures of the 17 fragment hits from the BLI screening of the EFSL. Marked with a * are the 4 hits binding to FabF C164A with $K_D < 500 \mu$ M. Fragment hit EOS102727 (1) was repurchased for retesting and further validation using X-ray crystallography.

EOS ID	Fragment structure	EOS ID	Fragment structure
EOS102612	H_2N N = F F F F	EOS102679	H N N H ₂
EOS102836	H ₂ N N N	EOS103073	
EOS102554		EOS102736	H ₂ N N N
EOS103477	$ \begin{matrix} H \\ N \\ N \\ N \end{matrix} $	EOS103128	O NH ₂
EOS103501	N NH ₂	EOS103471	HN
EOS103478*	NH ₂	EOS103304	HN N F
EOS103499*	NH ₂	EOS102727* (1)	
EOS102855*	O NH NH2	EOS102809	
EOS102663			

Supplementary Table S3. Structures of the 7 hits from the BLI screening of selected ECBL poised molecules. Fragment hits EOS69423 (2) and EOS21030 (3) were repurchased for retesting.

EOS ID	Structure
EOS11491	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & -\xi \end{array} \\ \end{array} $
EOS21049	
EOS69423 (2)	NH2
EOS21030 (3)	
EOS11668	
EOS64113	
EOS21494	

Structure	PaFabF C164A-1	PaFabF C164A-2	PaFabF C164A-3
PDB ID	8PJ0	8ROI	8R1V
Space group	P 1 21 1	C 2 2 21	C 2 2 21
α, b, c (Å) α, β, γ (°)	72.46 141.34 72.48 90.00 91.64 90.00	101.02 103.67 141.31 90.00 90.00 90.00	100.95 104.34 144.12 90.00 90.00 90.00
Solvent content (%)	41	42	43
Diffraction data			
Resolution range (Å)	48.83 - 1.70	72.35 – 1.51	72.66 – 2.09
Unique reflections	158061 (7870)	115834 (5652)	45462 (3420)
Multiplicity	7.1 (6.8)	6.8 (5.9)	6.7 (6.6)
R _{meas} (%)	0.07 (0.88)	0.08 (2.21)	0.25 (2.26)
Completeness (%)	99.0 (99.0)	99.9 (96.2)	99.8 (97.7)
l/sigl	14.8 (2.1)	10.8 (0.3)	6.2 (0.9)
CC ½	0.999 (0.998)	0.998 (0.293)	0.993 (0.436)
Refinement			
R work/R free	0.175/0.198	0.192/0.236	0.189/0.254
Quaternary structure	dimer	dimer	dimer
R.m.s.d.s			
Bonds (Å)	0.005	0.014	0.015
Angles (Å)	1.27	1.89	2.14
Ramachandran plot, residues in (%)			
Favoured regions	1612 (97%)	804 (97%)	793 (97%)
Allowed regions	53 (3%)	25 (3%)	28 (3%)
Outlier regions	-	1 (0.12%)	-
Mean <i>B</i> factors (Å ²)			
Protein atoms	27.37	32.28	42.31
Ligands	51.31	36.70	64.69

Supplementary Table S4. Data-collection and refinement statistics. Values in parentheses are for the highest resolution shell.

Supplementary Figure S1. Eight calculated descriptors comparing DSI-Poised, EFSL (EUOS) and FX2_BESSY Fragment Libraries.

Supplementary Figure S2. Sensorgrams (left) and steady-state plots (right) for both FabF C164A (top) and w.t. (bottom) of the 17 fragment hits from the BLI screening of the EFSL.

Sample ID: EOS102612; Sensor FabF w.t.

Sample ID: EOS102836; Sensor FabF C164A

Sample ID: EOS102836; Sensor FabF w.t.

Sample ID: EOS102612; Sensor FabF C164A $K_D = 610 \ \mu$ M; R² = 0.9981

Sample ID: EOS102612; Sensor FabF w.t. $K_D = 730 \ \mu\text{M}$; $R^2 = 0.9987$

Sample ID: EOS102836; Sensor FabF C164A $K_D = 1800 \mu$ M; $R^2 = 0.9950$

Sample ID: EOS102836; Sensor FabF w.t. $K_D = 870 \mu$ M; $R^2 = 0.9982$

Sample ID: EOS102554; Sensor FabF C164A

Sample ID: EOS102554; Sensor FabF w.t.

Sample ID: EOS103477; Sensor FabF C164A

Sample ID: EOS102836; Sensor FabF w.t.

Sample ID: EOS102554; Sensor FabF C164A K_D = 2700 μ M; R² = 0.9956

Sample ID: EOS102554; Sensor FabF w.t. $K_D = 1600 \mu$ M; $R^2 = 0.9987$

Sample ID: EOS103477; Sensor FabF C164A $K_D = 1100 \mu$ M; $R^2 = 0.9984$

Sample ID: EOS103477; Sensor FabF w.t. $K_D = 690 \ \mu$ M; R² = 0.9964

Sample ID: EOS103501; Sensor FabF C164A

Sample ID: EOS103501; Sensor FabF w.t.

Sample ID: EOS103478; Sensor FabF C164A

Sample ID: EOS103478; Sensor FabF w.t.

Sample ID: EOS10350; Sensor FabF C164A $K_D = 530 \ \mu\text{M}$; R² = 0.9965

Sample ID: EOS10350; Sensor FabF w.t. $K_D = 560 \ \mu$ M; R² = 0.9955

Sample ID: EOS103478; Sensor FabF C164A $K_D = 380 \ \mu$ M; R² = 0.9694

Sample ID: EOS103478; Sensor FabF w.t. $K_D = 400 \ \mu$ M; R² = 0.9543

Sample ID: EOS103499; Sensor FabF C164A

Sample ID: EOS103499; Sensor FabF w.t.

Sample ID: EOS102855; Sensor FabF C164A

Sample ID: EOS102855; Sensor FabF w.t.

Sample ID: EOS103499; Sensor FabF w.t. $K_D = 390 \ \mu M$; $R^2 = 0.9760$

Sample ID: EOS103499; Sensor FabF w.t. $K_D = 340 \ \mu M$; $R^2 = 0.9599$

Sample ID: EOS102855; Sensor FabF C164A $K_D = 450 \ \mu$ M; R² = 0.9989

Sample ID: EOS102855; Sensor FabF w.t. $K_D = 1600 \ \mu\text{M}$; R² = 0.9985

Sample ID: EOS102663; Sensor FabF C164A

Sample ID: EOS102663; Sensor FabF w.t.

Sample ID: EOS102679; Sensor FabF C164A

Sample ID: EOS102679; Sensor FabF w. t.

Sample ID: EOS102663; Sensor FabF C164A K_{D} = 760 $\mu M;$ R^2 = 0.9778

Sample ID: EOS102663; Sensor FabF w.t. $K_D = 400 \ \mu M$; $R^2 = 0.9478$

Sample ID: EOS102679; Sensor FabF C164A $K_D = 830 \ \mu$ M; R² = 0.9942

Sample ID: EOS102679; Sensor FabF w.t. $K_D = 1400 \ \mu\text{M}$; $R^2 = 0.9608$

Sample ID: EOS103073; Sensor FabF C164A

Sample ID: EOS103073; Sensor FabF w.t.

Sample ID: EOS102736; Sensor FabF C164A

Sample ID: EOS102736; Sensor FabF w.t.

Sample ID: EOS103073; Sensor FabF C164A $K_D = 850 \ \mu$ M; R² = 0.9889

Sample ID: EOS103073; Sensor FabF w.t. $K_D = 870 \ \mu$ M; R² = 0.9924

Sample ID: EOS102736; Sensor FabF C164A $K_D = 770 \ \mu$ M; R² = 0.9882

Sample ID: EOS102736; Sensor FabF w.t. $K_D = 790 \ \mu$ M; R² = 0.9628

Sample ID: EOS103128; Sensor FabF w.t.

Sample ID: EOS103471; Sensor FabF C164A

Sample ID: EOS103471; Sensor FabF w.t.

Sample ID: EOS103128; Sensor FabF C164A K_D = 1700 μ M; R² = 0.9972

Sample ID: EOS103128; Sensor FabF w.t. $K_D = 2800 \ \mu\text{M}$; $R^2 = 0.9950$

Sample ID: EOS103471; Sensor FabF C164A $K_D = 1200 \mu$ M; $R^2 = 0.9937$

Sample ID: EOS103471; Sensor FabF w.t. $K_D = 1600 \ \mu\text{M}$; $R^2 = 0.9912$

Sample ID: EOS103304; Sensor FabF C164A

Sample ID: EOS103304; Sensor FabF w.t.

Sample ID: EOS102727; Sensor FabF C164A

Sample ID: EOS102727; Sensor FabF w.t.

Sample ID: EOS103304; Sensor FabF C164A $K_D = 2300 \mu$ M; $R^2 = 0.9963$

Sample ID: EOS103304; Sensor FabF C164A $K_D = 1100 \mu$ M; $R^2 = 0.9885$

Sample ID: EOS102727; Sensor FabF C164A $K_D = 9.8 \,\mu$ M; $R^2 = 0.9895$

Sample ID: EOS102727; Sensor FabF w.t. K_D and R^2 could not be determined.

Sample ID: EOS102809; Sensor FabF C164A

Sample ID: EOS102809; Sensor FabF w.t.

Sample ID: EOS102809; Sensor FabF C164A K_{D} = 1400 $\mu\text{M};$ R² = 0.9868

Sample ID: EOS102809; Sensor FabF w.t. $K_D = 1200 \ \mu\text{M}$; $R^2 = 0.9758$

Supplementary Figure S3. Sensorgrams (left) and steady-state plots (right) for both FabF C164A of the 7 hits from the BLI screening of of selected ECBL poised molecules.

Sample ID: EOS21049; Sensor FabF C164A

Sample ID: EOS69423; Sensor FabF C164A

Sample ID: EOS21030; Sensor FabF C164A

Sample ID: EOS11491; Sensor FabF C164A $K_D = 44 \mu$ M; $R^2 = 0.9563$

Sample ID: EOS21049; Sensor FabF C164A $K_D = 76 \mu M$; $R^2 = 0.8014$

Sample ID: EOS69423; Sensor FabF C164A $K_D = 23 \mu M$; $R^2 = 0.9803$

Sample ID: EOS21030; Sensor FabF C164A K_D = 24 μ M; R² = 0.9890

Sample ID: EOS11668; Sensor FabF C164A

Sample ID: EOS64113; Sensor FabF C164A

Sample ID: EOS21494; Sensor FabF C164A

Sample ID: EOS11668; Sensor FabF C164A K_{D} = 200 $\mu M;$ R^{2} = 0.9413

Sample ID: EOS21494; Sensor FabF C164A K_{D} = 15 μM ; R² = 0.7782

Supplementary Figure S4. Steady-state plots in triplicate of repurchased material of hits **2** (top) and **3** (bottom). Bars indicate range of responses for the same concentration.

