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Normalized adsorption performance in principal component space.
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Figure S1. Normalized adsorption performance for H, at 100 Bar 243 K.
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Figure S2. Normalized adsorption performance for CH4 at 100 Bar 298 K.
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Figure S3. Normalized adsorption performance for H, at 100 Bar 77 K.



S2. MOFs by topology in principal component space.

bcu based MOFs in PC space

bcs based MOFs in PC space
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Figure S4. The first set of topologies in the PC Space.
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Figure S5. The second set of topologies in the PC Space.
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Figure S6. The third set of topologies in the PC Space.



reo based MOFs in PC space
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Figure S7. The fourth set of topologies in the PC Space.



srsb based MOFs in PC space spn based MOFs in PC space
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Figure S8. The Final set of topologies in the PC Space.
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Figure S9. TPT topology in the PC space




S3. Median of topologies in principal component space
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Figure S10. The topologies in the PCA space limited to 5 per plot
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S4. Transfer learning performance in generic clusters for different base clusters
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Figure S12. Generic Cluster Transfer for H, at 100 bar and 243 K transfer performance in terms of R?
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S5. Representative sample of the generic cluster’s performance using all metrics
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Figure S13. Generic Cluster Transfer for Cluster 0 using Total PC distance H; at 100 bar and 243 K
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Figure S14. Generic Cluster Transfer for Cluster 0 using PC1 for H, at 100 bar and 243 K transfer
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Figure S15. Generic Cluster Transfer for Cluster 0 using PC2 for H, at 100 bar and 243 K transfer



S6. Remaining metrics (exclusive of manuscript figures) regarding base performance of
generic clusters
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Figure S16. Worst Epoch and Learning analysis for gH, at 100 bar and 243 K generic transfer



S7. Representative sample of the topology cluster’s performance using all metrics
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Figure S17. Topology Cluster Transfer for Cluster 0 using Total PC distance H; at 100 bar and 243 K
transfer
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Figure S18. Topology Cluster Transfer for Cluster 0 using PC1 for H; at 100 bar and 243 K transfer
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Figure S19. Topology Cluster Transfer for Cluster 0 using PC2 for H; at 100 bar and 243 K transfer
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S8. Topology cluster metrics for all base clusters
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Figure S20. Topology Cluster Transfer for all base clusters using average values for H; at 100 bar and
243 K transfer



S9. Representative sample of generic cluster TL performance from hydrogen at 243 K to
methane at 298 K
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Figure S21. Generic Cluster Transfer for all base clusters using average values for H, at 100 bar and
243 K transfer to methane at 298 K



S10. Representative sample of topology cluster TL performance from hydrogen at 243 K to
methane at 298 K
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Figure S22. Topology Cluster Transfer for all base clusters using average values for H; at 100 bar and
243 K transfer to methane at 298 K



S11. Representative sample of generic cluster TL performance from methane at 298 K to
H2 at 100 bar and 243 K
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Figure S23. Topology Cluster Transfer for all base clusters using average values from methane at 298
K to H; at 100 bar and 243 K transfer



S12. Representative sample of topology cluster TL performance from methane at 298 K to
H2 at 100 bar and 243 K
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Figure S24. Topology Cluster Transfer for all base clusters using average values from methane at 298
K to H; at 100 bar and 243 K transfer



S13. Correlation data for generic clusters with respect to adsorption tasks

Table 1. The set of correlation data for all generic clusters partitioned by generic cluster.
General Cluster Correlation Data

H2@100 H2@100 CH4@100 Pcl Pc2

bar/77K bar/243K bar/298 K

(wt%) (wt%) (mg/g)

Correlation for whole MOF set
H2@100 1.0 0.979 0.988 0.917 -0.067
bar/77K
(wt%)
H2@100 0.979 1.0 0.990 0.872 0.054
bar/243K
(wt%)
CH4@100 0.988 0.99 1.0 0.875 -0.052
bar/298 K
(mg/g)
Pcl 0.917 0.872 0.875 1.0 -0.0
Pc2 -0.067 0.054 -0.052 -0.0 1.0
Correlation for 0" Cluster
H2@100 1.0 0.936 0.975 0.907 -0.884
bar/77K
(wt%)
H2@100 0.936 1.0 0.943 0.856 -0.761
bar/243K
(wt%)
CH4@100 0.975 0.943 1.0 0.893 -0.86
bar/298 K
(mg/g)
Pcl 0.907 0.856 0.893 1.0 -0.912
Pc2 -0.884 -0.761 -0.86 - 1.0
0.912
Correlation for 1°t Cluster

H2@100 1.0 0.937 0.971 0.684 -0.573
bar/77K
(wt%)
H2@100 0.937 1.0 0.962 0.58 -0.464
bar/243K
(wt%)
CH4@100 0.971 0.962 1.0 0.585 -0.574
bar/298 K

(mg/g)



Pcl
Pc2

H2@100
bar/77K
(wt%)
H2@100
bar/243K
(wt%)
CH4@100
bar/298 K
(mg/g)
Pcl

Pc2

H2@100
bar/77K
(wt%)
H2@100
bar/243K
(wt%)
CH4@100
bar/298 K
(mg/g)
Pcl

Pc2

H2@100
bar/77K
(wt%)
H2@100
bar/243K
(wt%)
CH4@100
bar/298 K
(mg/g)
Pcl

Pc2

0.684
-0.573

1.0

0.988

0.979

0.79
-0.482

1.0

0.992

0.976

0.598
-0.63

1.0

0.991

0.986

0.746
-0.045

0.58 0.585
-0.464 -0.574

Correlation for 2" Cluster

0.988 0.979
1.0 0.983
0.983 1.0

0.773 0.706
-0.463 -0.516

Correlation for 3" Cluster

0.992 0.976
1.0 0.963
0.963 1.0
0.657 0.515
-0.545 -0.678

Correlation for 4t Cluster

0.991 0.986
1.0 0.979
0.979 1.0

0.786 0.732
0.057 -0.08

Correlation for 5t Cluster

1.0

0.079

0.79

0.773

0.706

1.0
0.009

0.598

0.657

0.515

1.0
0.133

0.746

0.786

0.732

1.0
0.45

-0.079
1.0

-0.482

-0.463

-0.516

0.009
1.0

-0.63

-0.545

-0.678

0.133
1.0

-0.045

0.057

-0.08

0.45
1.0



H2@100
bar/77K
(wt%)
H2@100
bar/243K
(wt%)
CH4@100
bar/298 K
(mg/g)
Pcl

Pc2

1.0

0.989

0.985

0.743
0.005

0.989

1.0

0.994

0.735
0.066

0.985

0.994

1.0

0.719
-0.005

0.743

0.735

0.719

1.0
0.413

0.005

0.066

-0.005

0.413
1.0



S14. Comparison of model with respect to cluster S transfer from methane to Hydrogen

tasks and the vice versa
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Figure S25. A comparison of transfer learning models using cluster 5. We show the
performance with methane and hydrogen at different temperatures. Note that the models
performed almost identically showing hydrogen adsorption temperature is not a factor in

model performance.
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S15. Model analysis for generic cluster adsorption transfer from H2 at 100 bar and 243 K
to methane at 298 K
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Figure S26. Analysis from H2 at 100 bar and 243 K to methane at 298 K. Note poor model
performance with respect to distance of clusters.



S16. Model analysis for generic cluster adsorption transfer from methane at 298 K to H2 at
100 bar and 243 K

250
[ 2 25
225
200 7 20 R2= 98 20 2= 99
175 i
150 5 15 s
125 4
10 10
100 3
B
075 ) s
050 . o
H 1 11 it 20 13 o 7
16 45 5 5
14 40 6
2295 he=98 he= 98 L »
12 35 w
10 5
it 20 o pt) )

Transfer Cluster

60 05 10 1S 5 10 15 20 1 H 3 4 H 4 6 10 20 ] 10 0
45
225 . ] 25
10
2.00 p2=135 R2=99 R2=198 R2= 99
o 5 ; L | 1
175
150 30 B 15 »
125 25 10
N w0
100 20
s
075 15 2 5
050 10 0
1 2 3 4 2 4 L3 10 20 0 10 0
16 45 L) 25
6
14
35 5
<10
= 30 15
Zoe 4
=
Cos 25 10
04 20 3
5
02 15 2
00 10 o
1 2 3 1 ] H 5 10 20 0 10 20
150 45 ] 5
40ha= 91 ° R2=96 R2=199 p2= 99
125 = = 20 2= 20 f2=
s
o 100 ® -
1 30 15
£ois 4
<1 25 b 10
0s0 3 10
20
025 5
15 . 2 5
0.00
w0 [ o
00 05 10 15 05 10 15 20 1 2 3 1 2 4 [ 5 10 15 10 20 ] 10 0
Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total Performance

Base Cluster
Figure S27. Analysis from methane at 298 K to H2 at 100 bar and 243 K. Note good model
performance regardless of distance.



S17. Model residuals analysis from H2 at 100 bar and 243 K to methane at 298 K
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Figure S28. This shows the residuals for transfer from cluster zero to one and five. One is a
close cluster, showing good results. Five is a far cluster and the residuals show patterns.



S18. Model space analysis from H2 at 100 bar and 243 K to methane at 298 K
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Figure S29. This shows the residuals in terms of the PCA space. Yellow denotes high residuals
and dark purple represents no error.



