Highly efficient and stable green fluorescent OLEDs with high color purity using a BODIPY derivative

By Takeru Nakamura, Hisahiro Sasabe*, Shoki Abe, Kengo Kumada, Ryo Sugiyama, Takanori Hanayama, and Junji Kido

Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.

E-mail: (h-sasabe@yz.yamagata-u.ac.jp)

General Information

UV-Vis spectra was measured using a Shimadzu UV-3150 UV-vis-NIR spectrophotometer. Photoluminescence spectra were measured using a FluroMax-2 (Jobin-Yvon-Spex) luminescence spectrometer. The ionization potential (I_p) was determined using a Sumitomo Heavy Industries, Ltd PYS-201 in vacuum (~10⁻³ Pa).^[1] Photoluminescence quantum yield were measured using a Hamamatsu C11347 absolute PL quantum yield spectrometer with an integral sphere at an excitation wavelength of each sample.

Device Fabrication

The substrates were cleaned with ultra-purified water and organic solvents (acetone and then isopropanol), and then dry-cleaned for 30 min by exposure to UV-ozone. The organic layers were deposited onto the ITO substrate in vacuum (ca. 10^{-5} Pa) successively. Al was patterned using a shadow mask with an array of 2 mm × 2 mm openings without breaking the vacuum (ca. 10^{-5} Pa). The EL spectra were taken using an optical multichannel analyzer Hamamatsu Photonics PMA-11. The current density–voltage and luminance–voltage characteristics were measured using a Keithley source measure unit 2400 and a Minolta CS200 luminance meter, respectively.

[1] H. Ishii, D. Tsunami, T. Suenaga, N. Sato, Y. Kimura, M. Niwano, J. Surf. Sci. Soc. Jpn. 2007, 28, 264.

Figure S1. Normalized PL spectra of the (80 - x) wt% mCBP: 20 wt% 4CzIPN: x wt% tPhBODIPY co-deposited film.

111m.						
wt%	λ_{PL} $(nm)^a$	FWHM (nm) ^b	PLQY (%)°			
0	532	80	74.4			
0.5	521	30	79.0			
1.0	522	29	79.2			
3.0	522	30	72.7			
5.0	522	30	64.7			

 $\label{eq:s1} \textbf{Table S1}. \ Summary of photophysical properties for tPhBODIPY/4CzIPN/mCBP co-deposited film.$

^aPhtoluminescence peaks of the (80 - x) wt% mCBP: 20 wt% 4CzIPN: x wt% tPhBODIPY codeposited film. ^bFull width at half maximum.^cPhotoluminescence quantum yield of the (80 - x) wt% mCBP: 20 wt% 4CzIPN: x wt% tPhBODIPY co-deposited film.

Figure S2. Power efficiency-luminance (*PE-L*) characteristics for OLEDs with different tPhBODIPY concentrations from 0.5 to 5 wt%.

Figure S3. *PE-L* characteristics for OLEDs with different HTLs.

Figure S4 *PE-L* characteristics for OLEDs with T1DBFBP and triple HTLs.

HTL	LT_{50} (h) at 100 cd m ⁻²	LT_{50} (h) at 500 cd m ⁻²	LT_{50} (h) at 1000 cd m ⁻²	LT_{50} (h) at 3000 cd m ⁻²
T4DBFHPB	465834	27863	8283	1211
T4DBFBP	645966	38638	11487	1680
T1DBFBP	803303	48049	14285	2089
Triple HTL	811730	48553	14435	2111

Table S2. Summary of lifetime at different brightness estimated using the well-known formula of $T_{50} (L) = (L_0/L)^n \times T_{50} (L_0) (n = 1.75) [1].$

Ref. [1] D. Zhang, M. Cai, Y. Zhang, D. Zhang, L. Duan, Mater. Horiz. 2016, 3, 145-151.