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S1 Link to Repository Containing Code and Raw Data

The raw data, code, and results for this paper can be found at the following Github repository:

https://github.com/Tabor-Research-Group/Predicting-Disordered-Polymer-Folding-Behavior-Directly-

from-Sequences

S2 Simulation Snapshots

Figure S1
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Figure S2
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Figure S3
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S3 Illustrating Each Encoding Method on One Exam-

ple Sequence

Figure S4: Five encoding methods: categorical featurization (left) and physically-motivated
featurization (right).
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S4 One-Hot Encoding Linear Regression Learning Curves

Figures S5a and S5b contain the learning curves for the one-hot encoding linear regression models.

The learning curve of one-hot encoding indicates that the model overfits for these sparse features,

as the validation loss increases at the last three points as the training set size increases.

(a) Loss (b) Score

Figure S5: One-Hot Encoding Linear Regression Learning Curve
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S5 Learning Curves

(a) Loss (b) Score

Figure S6: Count Encoding Linear Ridge Regression Learning Curve

(a) Loss (b) Score

Figure S7: Count Encoding Kernel Ridge Regression Learning Curve
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(a) Loss (b) Score

Figure S8: Count Encoding Support Vector Regression Learning Curve

(a) Loss (b) Score

Figure S9: Count Encoding Gaussian Process Regression Learning Curve

(a) Loss (b) Score

Figure S10: Ordinal Encoding Linear Ridge Regression Learning Curve
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(a) Loss (b) Score

Figure S11: Ordinal Encoding Kernel Ridge Regression Learning Curve

(a) Loss (b) Score

Figure S12: Ordinal Encoding Support Vector Regression Learning Curve

(a) Loss (b) Score

Figure S13: Ordinal Encoding Gaussian Process Regression Learning Curve
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(a) Loss (b) Score

Figure S14: One-Hot Encoding Kernel Ridge Regression Learning Curve

(a) Loss (b) Score

Figure S15: One-Hot Encoding Support Vector Regression Learning Curve

(a) Loss (b) Score

Figure S16: One-Hot Encoding Gaussian Process Regression Learning Curve
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S6 2D Convolutional Neural Network

Figure S17: Prediction using the Color Mapping representation and a2D convolutional neural
network model.

S12



S7 Bag of Amino Acid Representation: Testing the

Exponent in the Representation

Here, we tested the performance of a family of BAAI featurizations. The exponent that is used for

each matrix element in the feature (β):

BAAI =
∑

i−j>1

(Xi −Xj)
β (1)

was varied, similar to the approach employed in reference S1. For each of these formulations of the

feature, we conducted the training and testing procedure as the model used in the main text. For

these tests, we used support vector regression, as it was the best model for the baseline model. The

first plot is the testing performance and the second plot is the extrapolation test using the same

strategy as the main text but different exponent values used in each element.

Figure S18
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Figure S19

S8 Count Encoding Extrapolation Test

We performed extrapolation tests (as described in section 3.4 of the main text) on count encoding.

For this feature, we only tested the extrapolation performance with a support vector regression

model, as the count encoding only contains 20 features. The performance is similar to BAAI model

on the IDP-10260 dataset.

Figure S20
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S9 Prediction on Experimental Data

We apply both CE and BAAI models on 42 experimental data points. Three plots of correlation

between prediction and experimental values are provided.

(a) Comparison between ex-
perimental values and predic-
tion from BAAI model

(b) Comparison between ex-
perimental values and predic-
tion from CE model

(c) Comparison between pre-
diction from CE and BAAI
model

Figure S21: Prediction on Experimental Data
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S10 Reverse Sequences Testing

Figure S22

As the underlying coarse-grained simulations do not depend on the amino acid sequence, we can

test the performance of the trained models on predicting the properties of “reversed sequences.”

By virtue of its construction, the count encoding feature will have the same predictions, but the

directional BAAI representation will have different representations for reversed sequences.

We tried 1) only reversing the training sequences or 2) only reversing the testing sequences. The

resulting R2 (as a function of β) shows that both cases give similar performance. This indicates

that the BAAI feature can handle data that has properties that are symmetric upon reversal of the

sequence while the generated matrix is transposed. This test was to ensure that this model, with

this representation, doesn’t “over-learn” from the intrinsically disordered proteins.
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S11 Symmetric BAAI

Since the coarse-grained model that was used to generate the training data is “symmetric” (it

would give identical results if the sequence were reversed), we built a symmetric representation,

which encodes both forward (e.g., C→A) and reverse (e.g., C←A) interactions together in a single

interaction. To make a non-redundant version of symmetric BAAI representation, we tested training

the model with only 210 features (only the “upper triangle” of the BAAI matrix). The testing

performance is similar to the original representation.

Figure S23: Performance (R2 of the test set) of the symmetric BAAI representation (where
are all interactions are symmetric, instead of proceeding along the chain) for the SVR models
as a function of β.
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S12 Shuffled Test

Here, we shuffle the Rg of a specific portion of training data and test using the correct Rg. The

R2 values between shuffled and non-shuffled training data are plotted to see how robust the rep-

resentation is to training set errors, which might be seen in larger, future datasets. The testing

performance can still achieve over 0.75 R2 when 40% of the training data is shuffled.

Figure S24: Performance of training and test set scores for BAAI representation (with SVR
model) when the model is given “erroneous” random sequence data as a fraction of its
training set.
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S13 Shuffle Test-Count Encoding

Figure S25

The shuffle test is also performed on count encoding. The training score goes down (as it

should), while the testing score can still maintain an R2 of 0.8 when 60% of the data is shuffled.
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S14 Simulation Details

All the simulations were performed using LAMMPS. A Langevin thermostat with a friction coeffi-

cient of 1 ps−1 was used to for each simulation. Each simulation consisted of a 500 ns run. The first

100 ns was used for the system to reach equilibrium. Seven temperatures (270, 300, 330, 360, 390,

420, 450K) and 10 fs timestep were used for all sequences. Bonded, electrostatic and short-range

pairwise interactions defined by amino acid hydropathy are included in the simulations.S2 Bonded

interactions are modeled using a harmonic potential with a spring constant of 10 kcal/mol Å2 and

a bond length of 3.8 Å. Electrostatic interactions are described using Debye-Huckel electrostatic

screening:

Eij(r) =
qiqj

4πϵ0Dr
exp (−r/κ) (2)

where κ is the Debye screening length and D is the dielectric constant of the solvent, 80 for water.

The short-range pairwise interaction is described by Ashbaugh-Hatch functional form,

Φ(r) =


ΦLJ + (1− λ)ϵ, if r ≤ 2

1
6σ

λΦLJ , otherwise

(3)

where ΦLJ is the standard Lennard-Jones potential. The lambda value is calculated by the average

of the hydropathy values of two amino acids (Table S1).

The scaling exponent ν is derived using the formulation of Zheng et al.S1

Rg =

√
γ (γ + 1)

2 (γ + 2ν) (γ + 2ν + 1)
bNν (4)

where γ = 1.1615, b = 0.55 and N is the number of peptide bonds.
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S15 Coarse-grained Model Parameters

Table S1: CG model parameters

Amino Acid Charge σ(Å) λ
A 0 5.04 0.730
C 0 5.48 0.595
D -1 5.58 0.378
E -1 5.92 0.459
F 0 6.36 1.000
G 0 4.50 0.649
H 0.5 6.08 0.514
I 0 6.18 0.973
K 1 6.36 0.514
L 0 6.18 0.973
M 0 6.18 0.838
N 0 5.68 0.432
P 0 5.56 1.000
Q 0 6.02 0.514
R 1 6.56 0.000
S 0 5.18 0.595
T 0 5.62 0.676
V 0 5.86 0.892
W 0 6.78 0.946
Y 0 6.46 0.865
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S16 Best Parameters for Classical Regression Models

Count Encoding:

Linear Ridge Regression: alpha: 0.6

Kernel Ridge Regression: alpha: 0.1, gamma: 1

Support Vector Regression: C: 100, gamma: 0.1 epsilon; 0.1

Gaussian Process Regression: alpha:0.05, length scale:1e5, length bounds:1e-20 ∼ 1e20

Ordinal Encoding:

Linear Ridge Regression: alpha: 350

Kernel Ridge Regression: alpha: 0.6, gamma: 0.01

Support Vector Regression: C: 1, gamma: 0.1 epsilon; 0.1

Gaussian Process Regression: alpha:0.7, length scale:1e5, length bounds:1e-20∼ 1e20

One-Hot Encoding:

Linear Ridge Regression: alpha: 120

Kernel Ridge Regression: alpha: 0.1, gamma: 0.001

Support Vector Regression: C: 10, gamma: 0.001 epsilon; 0.001

Gaussian Process Regression: alpha:1.5, length scale:1e5, length bounds:1e-20∼ 1e20

BAAI representation:

Support Vector Regression: C:10 gamma:0.1 epsilon:0.1

S17 Artificial Neural Network Architecture

Feed Forward Neural Network(section 3.5)

Input layer: dimension:400, activation function: swish, kernel initializer: glorot uniform

S22



One hidden layer: dimension:400, activation function: swish, kernel initializer: glorot uniform

Output layer: dimension:2, activation function: linear, kernel initializer: glorot uniform

Conv1D neural network(section 3.2)

One conv1d layer: filter:8, kernel size:3, stride:1, activation function: relu, kernel initializer: lecun

normal

One hidden layer: dimension:10, no activation function, kernel initializer: lecun normal, dropout

rate:0.2

output layer: dimension:1

Conv2D neural network(section 3.2)

One conv2d layer: filter:8, kernel size:(3,3) , stride:(1,1) , activation function: relu, kernel initial-

izer: lecun normal

One hidden layer: dimension:10, no activation function, kernel initializer: lecun normal, dropout

rate:0.2

output layer: dimension:1
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S18 Comparison of BAAI Representation to Augmented

Fingerprints and Performance on Alternative IDP

Datasets

Here, we test the performance of a set of the BAAI representations (specific details indicated in the

figures) on the set of 2585 intrinsically disordered proteins given in Reference S3. We compare our

results on both datasets to the augmented fingerprint approach described in the same reference, on

both the randomly generated 10260 dataset in this paper and the 2585 dataset. The overall results

are summarized in Table S2, with details shown in the text and figures that follow.

Table S2: Test set R2 for BAAI representations and Augmented Fingerprint Representations
(SVR Models)

Count Augmented BAAI BAAI Symmetric Symmetric
Encoding Fingerprint + CL BAAI BAAI + CL

IDP-10260 (This work) 0.942 0.961 0.936 0.937 0.937 0.937

IDP-2585 setS3 0.964 0.983 0.953 0.965 0.948 0.969 (β=-0.5)
0.967 0.967 0.974 0.974 (β=-2.0)

Although the BAAI + SVR model showed some ability to extrapolate to longer sequence lengths

in the 10260 dataset, the 2585 dataset contains much longer sequences (similar in length to the

sequences shown in Figure S21). In addition, the 2585 simulation dataset was obtained with the

temperature-corrected coarse-grained model, whereas we used a model where the potential is not

temperature-dependent for the 10260 dataset. Similar to our results in Section S9, this means that

the model was trained on a just the IDP-10260 set does not extrapolate well to higher values of Rg.

However, we are able to improve the BAAI + SVR model with retraining, which we show both in

Table S2 above and the figures below.
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Figure S26: Direct prediction or Rg based on BAAI representation (SVR model) trained on
our data set. The R2, MSE, and RMSE are indicated on the inset of the plot, indicating
that retraining is necessary.

Figure S27: Retraining on the IDP-2585 set. A test on the exponent β was performed to
evaluate the sensitivity of the model.

Though the BAAI models do not reach the same accuracy as the augmented fingerprint models,

we expect that some of this behavior could be explained by the size of the dataset. Since all BAAI

representations have at least 210 features, they may need a larger volume of training data to show

a payoff in improved performance, though the performance is relatively good, especially for the

symmetric BAAI with β = −2.0, where only a few points could make difference in the model’s top-

line R2 performance. In addition, as mentioned in the main text, certain sequences may need to

be explicitly included to challenge the models more than randomly generated (or DisProt-sourced)

sequences.
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Figure S28: Extrapolation test using different β values in BAAI on the 2585 dataset. The
R2 values and percent error are plotted to examine the extrapolation ability of β values of
-0.5 or -2.0.

Figure S29: Performance of BAAI and BAAI + Chain Length using different β values.
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Figure S30: Performance of symmetric BAAI and symmetric BAAI + Chain Length (CL)
using different β values.

Figure S31: Performance of count encoding and augmented fingerprint
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S19 Analysis of Temperature-Dependent Model for Tem-

perature Subsets

The following figures show the results for the models presented in Figure 5 of the main text but

broken down by performance in each temperature. We present the data in four different ways

due to the changing and length scales for the Rg of the polymer as a function of temperature.

First, we present the ν and Rg scatter plots as shown in Figure 5 in the text. Then, we show the

R2, MAE, RMSE, and average percent error predictions as a function of temperature for both of

these metrics. Overall, the models are relatively consistent across different temperatures. However,

because Rg increases as a function of temperature, MAE and RMSE will increase in parallel. In the

intermediate temperatures, we also see an increase in the MAE and ν (which, although it should be

length-independent, has previously been noted to be length-dependent for this dataset in the text).

Finally, as all of the IDPs become, on average more “random walk” like at higher temperatures

(note the clustering of the data above 360 K on ν in Figure S32), it becomes more difficult to

differentiate the polymers from each other, and thus, R2 decreases, even though the percent error

in the prediction remains the same.

Temperature-dependent data-n

Figure S32: Performance of temperature-incorporated model for each temperature for ν.

S28



Temperature-dependent data-n
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Figure S33: Performance of temperature-incorporated model for each temperature for ν.

Temperature-dependent data-Rg

Figure S34: Performance of temperature-incorporated model for each temperature for Rg
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Temperature-dependent data-Rg
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Figure S35: Performance of temperature-incorporated model for each temperature for Rg

S30



References

[S1] Zheng, W.; Dignon, G.; Brown, M.; Kim, Y. C.; Mittal, J. Hydropathy patterning comple-

ments charge patterning to describe conformational preferences of disordered proteins. J. Phys.

Chem. Lett. 2020, 11, 3408–3415.

[S2] Dignon, G. L.; Zheng, W.; Kim, Y. C.; Best, R. B.; Mittal, J. Sequence determinants of protein

phase behavior from a coarse-grained model. PLOS Comput. Biol. 2018, 14, e1005941.

[S3] Patel, R. A.; Borca, C. H.; Webb, M. A. Featurization strategies for polymer sequence or

composition design by machine learning. Mol. Syst. Des. Eng. 2022, 7, 661–676.

S31


	Link to Repository Containing Code and Raw Data
	Simulation Snapshots
	Illustrating Each Encoding Method on One Example Sequence
	One-Hot Encoding Linear Regression Learning Curves
	Learning Curves
	2D Convolutional Neural Network
	Bag of Amino Acid Representation: Testing the Exponent in the Representation
	Count Encoding Extrapolation Test
	Prediction on Experimental Data
	Reverse Sequences Testing
	Symmetric BAAI
	Shuffled Test
	Shuffle Test-Count Encoding
	Simulation Details
	Coarse-grained Model Parameters
	Best Parameters for Classical Regression Models
	Artificial Neural Network Architecture
	Comparison of BAAI Representation to Augmented Fingerprints and Performance on Alternative IDP Datasets
	Analysis of Temperature-Dependent Model for Temperature Subsets
	References

