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1.0 GitHub Link – Analysis Codes 

The code used for the analysis can be accessed through the following GitHub Repository.  

2.0. Unloading Stage: Unsteady State Mass Balance Solution 

At the onset of the unloading stage, ligands within the sorbent layer release bound solute 

molecules and diffusion drives the transport of solute out of the sorbent. The time-dependent 

concentration profile of solute in the sorbent layer can be determined by solving Equation 1.    

∂c!

∂𝑡
= 𝐷"

∂#c!

∂z#
 1 

c! and D! are the concentration and diffusion coefficient of the solute in the sorbent layer, 

respectively, t	is the time, and z defines the coordinate system across the thickness of the sorbent 

layer.  

Within this work, we consider the effect of an imperfect gate layer that allows solute to diffuse 

both upstream into the feed solution and downstream into the receiving solution during the 

unloading stage. This physical phenomenon is described using a boundary condition that 

quantifies the flux of solute at the interface between the gate and sorbent layers, at z = 0, 

Equation 2.  

−D!
∂c!

∂z
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c!|'%& is the concentration of solute at the interface between the gate and sorbent layers, c( is the 

concentration of solute in the feed solution, and B is the solute permeability coefficient for the gate 

layer. This form of the equation implies that the gate layer is at pseudo-steady state.  The receiving 

solution,	c), is assumed to be well mixed and free of solute, Equation 3.   

c!|'%* = c) = 	0 3 

https://github.com/ouimetja/solute-selective-ion-pumps#readme
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The initial condition required to solve Equation 1 is defined by the concentration profile at the end 

of the previous loading stage, Equation 4.  

𝑐"(𝑧)|+%&	 = 𝑐"(𝑧)|+%+!3445446
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The feed concentration and the thickness of the sorbent layer are used to non-dimensionalize 

the concentration of solute and the coordinate system, respectively. The diffusion time, t6 =

	L#/D!, emerges naturally to non-dimensionalize the time, Equation 5.    

𝕔 =
c!
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z
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As such, the governing equation (Equation 6), boundary conditions (Equations 7-8), and initial 

condition (Equation 9) are rewritten.   
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𝕔|=%> = 0 8 

𝕔(𝜉)|9$!%&	 = 𝕔(𝜉)|9%9!  9 

The Biot number, Bi, appears in the upstream boundary condition (Equation 7) due to this 

dimensional analysis. The Biot number provides a ratio of the resistance to permeation offered 

by the sorbent layer relative to the gate layer.  

The partial differential equation is solved by writing the concentration within the sorbent matrix 

as the sum of a steady state, 𝕔"", and transient, 𝕔+, component, Equation S1.  

𝕔 = 𝕔"" + 𝕔+ S1 
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The governing equation and boundary conditions for the steady state component are not 

dependent on the time. Therefore, Equations 6-8 simplify to Equations S2-S4. The differential 

equation is solved to determine the steady state solution (Equation S5).  

0 =
𝑑#𝕔""
𝑑𝜉#

 S2 

−
∂𝕔""
∂ξ

= −Bi=𝕔!!|:%& − 1? S3 

𝕔!!|=%> = 0 S4 

𝕔"" =
?4

?4@>
(1 − 𝜉)  S5 

For an impermeable gate layer (i.e., 𝐵𝑖 = 0), the steady state solution corresponds to all the solute 

diffusing out of the membrane. For an imperfect gate layer (i.e., 𝐵𝑖 > 0), the steady-state 

concentration profile is related to the resistance between the gate layer and the sorbent layer.  

The transient solution is defined by the following partial differential equation (Equation S6) 

and boundary conditions (Equation S7 and S8).  

7𝕔%
7A
= B"𝕔&

B="
  S6 

7𝕔&
7:
= Bi	𝕔+|:%&  S7 

𝕔C|:%> = 0 S8 

The partial differential equation is solved using separation of variables, Equation S9.  

𝕔+ = 𝐺(𝜏)𝐹(𝜉) = J𝐴.𝑒DE'
"9[𝐵. cos(𝜎.𝜉) + 𝐶. sin(𝜎.𝜉)]

F

.%>

 S9 

  

The boundary conditions are applied to simplify the coefficients, Equation S10.  
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𝕔+ =	JAGH eDI(
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The integration constants, AGH  (Equation S11),  are defined by the previous loading stage 

concentration profile, 𝕔+|9$!%&34546
"+3J+	01
K.203/4.5

= 𝕔+|9%9!356
-./	01
203/4.5

 and the eigenvalues, σG (Equation S12). 
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−σGcot(σG) = Bi		  S12 

Together, the steady state and transient solutions provide the time-varying concentration 

profile of the unloading stage, Equation S13.  

𝕔 = 	 ;T
;T@>

(1 − ξ) + ∑ AGH eDI(
"9{cos	(σGξF

G%> ) + ;T
I(
sin(σGξ)}  S13 
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3. Supplementary Figures 

 

Figure S1: Solute concentration profiles for a Bi = 0 system. The concentration profile after 1, 5 
and 100 unloading and loading cycles are plotted for systems where 𝕔U = 10 and Bi = 0.  The 
systems are operating at dimensionless unloading time, τVW, 0.01 and loading time, τW, 0.0125. 
The simulations were initialized with a saturated sorbent layer ] 𝕔

𝕔0
= 1^.  
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Figure S2: Solute concentration profiles for a Bi = 1 system. The concentration profile after 1, 5 
and 100 unloading and loading cycles are plotted for systems where 𝕔U = 10 and Bi = 1. The 
systems are operating at dimensionless unloading time, τVW, 0.01 and loading time, τW, 0.0125. 
The simulations were initialized with a saturated sorbent layer ] 𝕔

𝕔0
= 1^.  
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Figure S3: The change in the (A) penetration front and (B) performance with increasing cycles. 
While the flux of solute into the sorbent layer during the loading stage balancing the flux of solute 
out of the sorbent layer during the unloading stage is used to assess PSS, the penetration front 
and performance corroborate that a system has reached pseudo-steady state. Simulations are 
initialized with a saturated sorbent layer operating at nondimensional unloading time, τVW, 0.01 
and loading time, τW, 0.0125. Red data points correspond to a system with Bi = 0. Blue data points 
correspond to a system with Bi = 1. The penetration front and performance converge to a 
constant value as the systems approach pseudo-steady state. 
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Figure S4: Mathematical evaluation of the approach to pseudo-steady state for simulations 
initialized with an empty sorbent layer ] 𝕔

𝕔0
= 0^. The concentration profile after 1, 5 and 100 

unloading cycles are plotted for systems [(A) Bi = 0 and (B) Bi = 1] operating at dimensionless 
unloading time, τVW, 0.01 and loading time, τW, 0.0125. The location of the penetration fronts of the 
loading stage are indicated with asterisks. (C) The total flux of solute entering (Flux In) and exiting 
(Flux Out) the sorbent layer for the Bi = 0 (red data points) and Bi = 1 (light blue data points) 
systems. (D) The total flux out is broken into individual components for Bi = 0 (red) and Bi = 1 
(light blue) systems. The data points indicated by ξ = 1	correspond to the flux of solute into the 
receiving solution. The data points indicated by ξ = 0 correspond to the flux of solute into the 
upstream reservoir.   
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Figure S5: The change in the (A) penetration front and (B) performance with increasing cycles.  
While the flux of solute into the sorbent layer during the loading stage balancing the flux of solute 
out of the sorbent layer during the unloading stage is used to assess PSS, the penetration front 
and performance corroborate that a system has reached pseudo-steady state. Simulations are 
initialized with an empty sorbent layer operating at nondimensional unloading time, 𝜏K2, 0.01 and 
loading time, τW, 0.0125. Red data points correspond to a system with Bi = 0. Blue data points 
correspond to a system with Bi = 1. The penetration front and performance converge to a 
constant value as the systems approach pseudo-steady state. 
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Figure S6. The penetration front is plotted as a function of the unloading time for systems 
where 𝕔X = 10	and 𝐵𝑖 = 0, 0.1, or 1.  The penetration front is independent of the Biot number at 
fixed unloading times.  

 

 

Figure S7. A parity plot of the numerical (y-axis) and analytical (x-axis) performances. Systems 
with sorbent densities of (A) 10, (B) 100 and (C) 1000 are presented. The black 45-degree line is 
used to indicate solutions that are equal.  
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Figure S8. The optimal process operating conditions (i.e., τVW and τW) converge with increasing 
sorbent densities. The solid lines correspond to the analytical solutions of systems with 
impermeable gate layers and sorbent densities of 10 (orange), 100 (blue) and 1000 (green). For 
each sorbent density, open circles and filled triangles correspond to the numerical solution of 
systems with Biot numbers of 0 and 1, respectively. 
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Figure S9. For an optimized system operating at τVW = 0.1, the penetration front is plotted at 
varying sorbent densities for five different Biot numbers. The penetration front is independent of 
the Biot number for sufficiently high 𝕔U.  
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Figure S10. A parity plot comparing the experimental performance of polymeric ion pumps from 
literature and the performance predicted by the numerical solver. The black squares correspond 
to the analytical solution derived from an impermeable gate layer.1 The red squares correspond 
to the numerical performance of a system with an impermeable gate layer during the unloading 
stage. The green circles correspond to the performance of the system after material properties 
define the permeability of the gate layer (i.e., Bi = 4.78).   


