Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2023

Rational design of water-harvesting hydrogels

Moki K. Thanusing¹, Peidong Shen¹, Brett L. Pollard¹, Luke A. Connal^{1*}

¹Research school of chemistry, The Australian National University

* luke.connal@anu.edu.au

Supporting Information

Figure S1: ¹H NMR spectrum of poly(MAA₈₀-*co*-PEGMA₂₀), with major protons assigned where possible.

Feed ratio (MAA:PEGMA) Mn(kDa)

Notes

60:40	12.6	Viscous liquid
70:30	11.5	Malleable
80:20	11.3	Malleable yet glassy
90:10	26.1	Brittle

Table S1: M_n of poly(MAA-*co*-PEGMA) as calculated using ¹H NMR spectroscopy (by way

of integration). Additional notes on appearance of samples are provided.

Scheme S1: Pathway to synthesis of poly(MAA-*co*-PEGMA) temperature-responsive co-polymers.

Figure S2: Water uptake over 24 hours of *GS1* and *G9*, comparing MAA content. *GS1* used a 95:5 ratio of MAA to PEGDMA (10,000 Da).

Figure S3: A photograph of the humidity box (left) and a schematic of the system (right).