Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2023

Supporting information

A quantum chemical assessment on the sensing ability of porphyrins and phthalocyanines towards volatile organic compounds using density functional theory investigations

Rence P Reji^a, Yuvaraj Sivalingam^b, Yoshiyuki Kawazoe ^{c,d,e} and Surya Velappa Jayaraman^{a,c*}

^aNovel, Advanced, and Applied Materials (NAAM) laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India

^bLaboratory of Sensors, Energy, and Electronic devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India

^cNew Industry Creation Hatchery Center, Tohoku University, Aoba-Ku, Miyagi, Sendai 980-8579, Japan

^dDepartment of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India

^eDepartment of Physics, Suranaree University of Technology, Nakhon Ratchasima, Thailand.

*Corresponding author E-mail: suryaj@srmist.edu.in

Fig S1. Optimised structures of VOCs: (a) Ethanol, (b) 1-propanol, (c) 1-hexanol, (d) Diethyl glycol, (e) Acetone, (f) Ethylmethyl ketone, (g) Acetonitrile, (h) Ammonia, (i) n-hexane, (j) n-decane, (k) Chloroform, (l) Benzene, (m)1,2-dicholoro benzene, (n) Toluene, (o) TEA, (p) Nonanal.

Fig S2. (a) HOMO-LUMO values of organic molecules, (b) HOMO-LUMO values of VOCs, (c) Electronegativity of organic molecules, (d) Electronegativity of VOCs, (e) Chemical potential of organic molecules, (f) Chemical potential of VOCs, (g) Hardness of organic

molecules, (h) Hardness of VOCs. (i) Softness of organic molecules, (j) softness of VOCs, (k) Electrophilicity of organic molecules, and (l) Electrophilicity of VOCs.

Dipole moment and Mulliken charge analyses

Table S1. Dipole moment of organic molecules.

Organic Molecule	Dipole moment (Debye)
H ₂ Pc	0.000
FePc	0.001
H ₂ TPPCOOH	6.256
ZnTPPCOOH	6.248

Table S1 shows the dipole moment of pristine organic molecules. Phthalocyanines show zero dipole moment and porphyrins have a significant dipole moment due to the presence of the functional groups. The inclusion of the central metal atom in both phthalocyanines and porphyrins results in a negligible change in the dipole moment. The effect of VOCs adsorption on the dipole moment is investigated and is summarised in Table S2.

VOCs	H ₂ Pc	FePc	H ₂ TPPCOOH	ZnTPPCOOH
Ethanol	2.10	3.28	6.63	8.13
1-propanol	2.00	3.37	7.05	7.37
1-hexanol	2.05	3.67	6.41	7.64
Diethylene				
glycol	2.83	2.38	8.57	7.73
Acetone	2.76	4.77	6.63	9.50
Ethyl methyl				
ketone	3.66	4.69	6.97	8.13
Acetonitrile	4.16	5.54	8.58	10.00
Ammonia	1.57	3.15	7.25	7.84
n-hexane	0.14	1.53	6.98	6.23
n-decane	0.17	1.57	6.18	6.31
Chloroform	2.31	0.76	9.27	6.17
Benzene	0.53	1.79	6.10	6.15
1,2-				
dichloroben				
zene	3.56	1.79	3.28	4.80
Toluene	0.58	2.26	5.52	6.33
TEA	0.46	1.55	7.30	6.68
Nonanal	2.44	4.61	6.55	8.85

 Table S2. Dipole moment (Debye) of organic molecules+VOCs systems.

The change in dipole moment observed during adsorption is due to charge transfer between organic molecules and VOCs.[1] In all the cases, organic molecules with acetonitrile

have the highest dipole moment. The adsorption of acetonitrile on ZnTPPCOOH has the highest dipole (10 Debye) moment whereas the adsorption of n-hexane on H₂Pc has the lowest dipole moment (0.14 Debye). It can be concluded that porphyrin systems have the highest dipole moment than phthalocyanines. Mulliken charge analysis illustrates this point. It determines the partial atomic charges of molecules in a system.[2] Charge transfer from organic molecules to VOCs can be seen in this Table S3. Charge transfer mechanism such as physisorption (low charge transfer) and chemisorption (high charge transfer) were used to confirm the magnitude of gas interaction.[3] In all circumstances, organic molecules with metal ions exhibit a greater ability to transfer charge. As a result, metal-organic molecules exhibit higher charge transfer than metal-free organic molecules.

VOCs	H ₂ Pc	FePc	H ₂ TPPCOOH	ZnTPPCOOH
Ethanol	-0.02	-0.48	-0.02	-0.21
1-propanol	-0.03	-0.55	-0.02	-0.15
1-hexanol	0.09	-0.31	-0.01	-0.03
Diethyl				
glycol	0.01	-0.39	0.02	-0.15
Acetone	0.02	-0.55	-0.02	-0.20
Ethyl methyl				
ketone	0.07	-0.52	-0.02	-0.19
Acetonitrile	0.08	-0.59	0.00	-0.34
Ammonia	0.01	-0.58	0.03	-0.33
n-hexane	0.12	-0.27	-0.03	0.06
n-decane	0.07	-0.24	-0.02	0.08
Chloroform	0.07	-0.48	0.01	0.00
Benzene	0.03	-0.24	0.09	-0.03
1,2-				
dichloroben				
zene	0.06	-0.41	-0.08	0.07
Toluene	0.07	-0.20	0.09	-0.03
TEA	0.08	-0.15	-0.04	0.11
Nonanal	0.11	-0.51	0.03	0.14

Table S3. Mulliken charge (e) on organic molecules after adsorption of VOCs.

 Table S4. Sensitivity of organic molecules toward VOCs.

VOCs	H ₂ Pc	FePc	H ₂ TPPCOOH	ZnTPPCOOH
Ethanol	56.04	100.00	22.83	471.21
1-propanol	56.04	100.00	9.46	489.65
1-hexanol	50.36	100.00	17.33	324.60

Diethylene				
glycol	59.38	100.00	26.96	403.02
Acetone	24.91	100.00	19.49	433.20
Ethyl methyl				
ketone	11.17	100.00	100.00	525.03
Acetonitrile	26.24	100.00	23.24	531.68
Ammonia	22.95	100.00	14.66	689.06
n-hexane	0.00	100.00	0.50	23.60
n-decane	0.53	100.00	4.12	34.53
Chloroform	26.24	100.00	21.69	23.60
Benzene	2.68	100.00	12.84	10.59
1,2-				
dichlorobenzene	7.70	100.00	2.06	36.68
Toluene	6.00	100.00	10.97	14.16
TEA	0.00	100.00	515.37	15.99
Nonanal	26.91	100.00	19.07	5.66

 Table S5. Selectivity of organic molecules toward VOCs.

VOCs	H ₂ Pc	FePc	H ₂ TPPCOOH	ZnTPPCOOH
Ethanol	0.149	0.063	0.028	0.117
1-propanol	0.149	0.063	0.012	0.121
1-hexanol	0.134	0.063	0.021	0.081
Diethylene	0.157	0.063	0.033	0.100
glycol				
Acetone	0.066	0.063	0.024	0.107
Ethyl methyl	0.030	0.063	0.122	0.130
ketone				
Acetonitrile	0.070	0.063	0.028	0.132
Ammonia	0.061	0.063	0.018	0.171
n-hexane	0.000	0.063	0.001	0.006
n-decane	0.001	0.063	0.005	0.009
Chloroform	0.070	0.063	0.026	0.006
Benzene	0.007	0.063	0.016	0.003
1,2-	0.020	0.063	0.003	0.009
dichlorobenzene				
Toluene	0.016	0.063	0.013	0.004

TEA	0.000	0.063	0.628	0.004
Nonanal	0.071	0.063	0.023	0.001

Table S6. Recovery time (sec) of VOCs on each organic molecule at room temperature 298K.

VOCs	H ₂ Pc	FePc	H ₂ TPPCOOH	ZnTPPCOOH
Ethanol	9.71E-09	2.02E+04	6.46E-07	1.39E-06
1-propanol	7.81E-09	4.34E+03	9.87E-10	1.54E-06
1-hexanol	3.54E-09	3.00E+04	7.05E-07	1.38E-06
Diethylene				
glycol	1.55E-08	2.54E+03	1.73E-08	6.43E-07
Acetone	1.44E-11	2.71E+03	1.69E-06	1.27E-07
Ethylmethyl				
ketone	5.26E-12	4.74E+03	3.02E-07	1.35E-07
Acetonitrile	2.58E-11	2.73E+08	7.07E-08	2.00E-08
Ammonia	4.31E-11	1.16E+12	1.32E-05	3.21E-04
n-hexane	1.80E-12	4.12E-10	2.38E-12	1.73E-12
n-decane	1.26E-12	4.43E-10	1.47E-12	1.97E-12
Chloroform	1.16E-10	1.00E-05	3.48E-09	3.01E-10
Benzene	2.94E-12	2.10E-09	7.81E-11	3.75E-12
1,2-dicholoro				
benzene	8.34E-12	6.72E-06	1.19E-10	3.32E-11
Toluene	2.44E-12	8.41E-09	1.61E-10	3.47E-12
TEA	1.48E-12	3.50E-10	4.52E-12	1.95E-12
Nonanal	1.92E-11	8.47E+04	4.21E-07	8.06E-11

Table S7. Recovery time (sec) of VOCs on each organic molecule at a high temperature of498K.

VOCs	H ₂ Pc	FePc	H ₂ TPPCOOH	ZnTPPCOOH
Ethanol	2.43E-10	5.72E-03	3.00E-09	4.75E-09
1-propanol	2.14E-10	2.28E-03	6.19E-11	5.03E-09
1-hexanol	1.33E-10	7.24E-03	3.16E-09	4.72E-09

Diethylene				
glycol	3.22E-10	1.65E-03	3.44E-10	2.99E-09
Acetone	4.93E-12	1.72E-03	5.33E-09	1.13E-09
Ethylmethyl				
ketone	2.70E-12	2.40E-03	1.90E-09	1.18E-09
Acetonitrile	7.00E-12	1.69E+00	7.98E-10	3.74E-10
Ammonia	9.50E-12	2.52E+02	1.83E-08	1.23E-07
n-hexane	1.42E-12	3.67E-11	1.68E-12	1.39E-12
n-decane	1.15E-12	3.83E-11	1.26E-12	1.50E-12
Chloroform	1.72E-11	1.55E-08	1.32E-10	3.04E-11
Benzene	1.91E-12	9.72E-11	1.36E-11	2.21E-12
1,2-dicholoro				
benzene	3.56E-12	1.22E-08	1.75E-11	8.13E-12
Toluene	1.70E-12	2.23E-10	2.09E-11	2.10E-12
TEA	1.27E-12	3.33E-11	2.47E-12	1.49E-12
Nonanal	5.85E-12	1.35E-02	2.32E-09	1.38E-11

References

- S. Hussain, S.A. Shahid Chatha, A.I. Hussain, R. Hussain, M.Y. Mehboob, T. Gulzar, A. Mansha, N. Shahzad, K. Ayub, Designing Novel Zn-Decorated Inorganic B12P12Nanoclusters with Promising Electronic Properties: A Step Forward toward Efficient CO2Sensing Materials, ACS Omega. 5 (2020) 15547–15556. https://doi.org/10.1021/acsomega.0c01686.
- [2] R. Sarkar, T.K. Kundu, Density functional theory studies on PVDF/ionic liquid composite systems, J. Chem. Sci. 130 (2018). https://doi.org/10.1007/s12039-018-1522-4.
- [3] Z. Zhao, Y. Yong, Q. Zhou, Y. Kuang, X. Li, Gas-Sensing Properties of the SiC Monolayer and Bilayer: A Density Functional Theory Study, ACS Omega. 5 (2020) 12364–12373. https://doi.org/10.1021/acsomega.0c01084.