Single-Atom Cobalt Encapsulated in Carbon Nanotubes as an Effective Catalyst for Enhancing Sulfur Conversion in Lithium-Sulfur Batteries

Theoretical computations

The VASP software was utilized for quantum density functional theory (DFT) investigations to determine the binding energy (E_b) between substrates and Li_2S_n (n=1, 2, 4, 6, 8). The binding energy was estimated using the following equation:

$$E_{b} = E_{Li_{2}S_{n} + substrate} - E_{Li_{2}S_{n}} - E_{substrate}$$

The energy of Li_2S_n , substrate, and Li_2S_n -substrates are respectively associated with E_b , $E_{substrate}$, and $ELi_2S_{n+substrate}$.

We performed calculations for each LiPS and catalyst combination using a minimum of 10 distinct initial configurations in order to determine the most favorable total SCF energy. Due to the presence of Co atoms as catalysts, we utilized unrestricted Kohn-Sham DFT to accurately represent the open-shell system. The exchange-correlation potential was chosen to be the extended gradient approximation, as proposed by Perdew, Burke, and Ernzerhof. The plane wave's cut-off energy was established at 400 eV. The energy threshold for the iterative solution of the Kohn-Sham equation was established at 10^-5 eV. The structures were relaxed until the residual stresses on the atoms decreased to below 0.05 eV Å⁻¹. The weak interaction was characterized using the DFT+D3 approach, which incorporates an empirical correction based on Grimme's scheme. The vacuum space was adjusted to a size greater than 15 Å, ensuring that there was no contact between periodic pictures. The Brillouin zones of Co[0001] materials and CoN₄ materials were sampled using a $3 \times 3 \times 1$ k points grid. An ascending-nudged elastic band approach was employed to ascertain the minimum energy pathway for the transitional state scanning process.

Table S1. EXAFS fitting parameters at the Co K-edge for various samples						
Sample	Shell	Nª	R (Å)⁵	σ² (Ų·10 ⁻³) ^с	$\Delta E_0 (eV)^d$	R factor(%)
COSAC@CN	Co-N	4.5	1.91	9.8	-6.0	0.6
Т						
CONP@CNT	CO-CO	8.7	2.51	6.3	5.9	0.2

Fig.S4 Co/NGDY and NGDY electrodes charge/discharge profiles captured at 0.2 C, , 1, 2, 3.6 C, and 3.6 C.