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Supplementary Note 1. Conventional machine learning framework for Li-ion battery 
SOH estimation

In this section, the working process of the conventional machine learning framework will be 
described in detail.

1.1 Data preprocessing and feature extraction

Battery degradation is a complex result of various mechanisms such as formation of the SEI 
layer and Li-plating. However, there are limitations to estimating battery health from the 
mechanisms because they occur inside the battery cell. Therefore, a phenomenological 
approach based on the features expressed in measurable parameters, such as voltage, capacity, 
and temperature, is required. Many researches have noted a pattern in cycling profiles with 
battery aging. For example, the initial voltage of discharge decreases and the peak of the charge 
IC curve shifts as cycling progresses, as shown in Supplementary Fig. S4-S6. Therefore, to 
analyze D-GELS performance comparatively, we analyzed the salient patterns of profiles. 35 
features were extracted as battery health indicators to construct conventional frameworks 
(Supplementary Table 2). The 35 features are categorized into three groups, voltage-related 
features, cell surface temperature-related features, and incremental capacity-related features. 
Some of the extracted features are closely related to battery aging, but there will also be features 
that have no relation or are negligible. They not only increase computational cost but can also 
cause overfitting problems. Therefore, the process of selecting the optimal feature set is 
necessary.   

1.2 Feature selection

In this paper, four feature selection strategies are concerned: Filter method, Feature Selector, 
PCA, and ElasticNet (Supplementary Table 3). Firstly, the filter method was set the threshold 
as 0.05 to remove quasi-constant features with VarianceThreshold() function in 
sklearn.feature_selection, and the Pearson correlation as 0.7 to remove correlated features with 
corr() function in Pandas. The remained 10 features were selected. The Feature Selector was 
set the parameters ‘missing_threshold’ as ‘0.6’, ‘correlation_threshold’ as ‘0.98’, ‘task’ as 
‘regression’, ‘eval_metric’ as ‘auc’, and ‘cumulative_importance’ as ‘0.98’. The remaining 7 
features were selected. In the PCA method, the feature eigenvalues were sorted and top 8 
features were selected because the cumulated explained variance ratio is over 0.9 after the 8th 
eigenvalue. The PCA was processed with PCA library of sklearn.decomposition. Finally, the 
ElasticNet was set the parameters ‘alpha’ as ‘0.3’ with the optimizing process using 
ElasticNetCV() in sklearn.linear_model. And 6 features were selected.

The K-Nearest Neighbor (KNN) model is used as the basic SOH prediction model to find out 
the optimal feature set. The parameter was set ‘n_neighbors’ as ‘5’, ‘metric’ as ‘minkowski’, 
and ‘weights’ as ‘uniform’ (Supplementary Table 3). As a result, the feature set which was 
selected by the Feature selector has the best performance, 0.005196 of RMSE.

1.3 Compared SOH estimation performance with D-GELS

In this section, the 7 feature set which was selected with Feature Selector was fed into four 
machine learning models to estimate SOH: GPR, SGD, RF, NuSVR. The GPR are set ‘alpah’ 
as ‘0.01’ with GaussianProcessRegressor() in sklearn.gaussian_process. The SGD are set with 
default parameters with SGDClassifier() in sklearn.linear_model. The RF was set ‘max_depth’ 
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as ‘10’, ‘random_state’ = ‘0’ with RandomForestRegressor() in sklearn.ensemble. And the 
NuSVR are set ‘kernel’ as ‘linear’, ‘C’ as ‘1.0’, ‘gamma’ as ‘auto’. 

After the models were trained, performance degradation was compared with D-GELS when 
the training dataset (25℃) and the test dataset (15℃ and 35℃) have different cycling 
temperature conditions (Supplementary Table 4).



Supplementary Fig. 1. The initial cycling curves of a battery with LFP cathode material 
cycled at environmental temperatures of 15℃, 25℃, and 35℃. The voltage, current, and 
cell temperature profiles at 25℃ were used for D-GELS training, and the cycling data at 
15℃ and 35℃ were used for applicability evaluation.



Supplementary Fig. 2. The initial cycling curves of a battery with NCA cathode material 
cycled at environmental temperatures of 15℃, 25℃, and 35℃. The voltage, current, and 
cell temperature profiles at 25℃ were used for D-GELS training, and the cycling data at 
15℃ and 35℃ were used for applicability evaluation.



Supplementary Fig. 3. The initial cycling curves of a battery with NMC cathode material 
cycled at environmental temperatures of 15℃, 25℃, and 35℃. The voltage, current, and 
cell temperature profiles at 25℃ were used for D-GELS training, and the cycling data at 
15℃ and 35℃ were used for applicability evaluation.



Supplementary Fig. 4. The voltage, cell temperature, and IC curves of battery cycling 
with LFP cathodes at 5, 1000, 2000, and 3000 cycles.



Supplementary Fig. 5. The voltage, cell temperature, and IC curves of battery cycling 
with NCA cathodes at 5, 100, 300, and 500 cycles.



 Supplementary Fig. 6. The voltage, cell temperature, and IC curves of battery cycling 
with NMC cathodes at 5, 100, 300, and 500 cycles.



Supplementary Fig. 7. (A) The Convolutional Neural Network architecture for SOH 
estimation. (B) Training and validation loss over epochs obtained by training the CNN 
regression model. 



Supplementary Fig. 8. The Context Encoders architecture for restored inpainting V, I, T 
- spatial channels in which the missing part accounts for 50% of the original.



Supplementary Fig. 9. Examples of restored 12.5% missing spatio-temporal channels by 
D-GELS.



Supplementary Fig. 10. Examples of restored 25% missing spatio-temporal channels by 
D-GELS.



 Supplementary Fig. 11. Examples of restored 50% missing spatio-temporal channels by 
D-GELS.



Supplementary Fig. 12. Examples of restored 75% missing spatio-temporal channels by 
D-GELS. 



Supplementary Fig. 13. Examples of restored random size of the missing window between 
25% and 50% or two 25% missing windows randomly spaced.



 

Supplementary Fig. 14. The performance of D-GELS in SOH estimation with the restored 
partial-cycling profiles. (a) The performance of D-GELS in predicting SOH with partial-
cycling data of 12.5%, 25%, 50% or 75% missing, or random or spaced missing windows 
in terms of three error metrics: RMSE, MAE, and MAPE. (b) RMSE according to the 
initial position of the 75% missing part as the missing window is moved across the spatio-
temporal channel from start to end.



Supplementary Table 1. The SOH estimation performance of D-GELS, and SOH 
estimation performance according to cathode materials of 10 iterations. 



Supplementary Table 2. The extracted features for the traditional method of SOH 
prediction.



Supplementary Table 3. The selected features with Filter Method, Feature Selector, PCA, 
and ElasticNet, and the SOH estimation performance of KNN. The number of selected 
features is written in brackets and the feature list is shown in the Supplementary Table 
2.



Supplementary Table 4. The SOH estimation performance of GPR, SGD, RF, and 
NuSVR with selected features, and D-GELS.



Supplementary Table 5. The SOH estimation performance of D-GELS with restored 12.5%, 25%, 50%, or 75%, or random or spaced 
missing windows.



Supplementary Table 6. The results of D-GELS according to starting position of the 12.5% missing part.



Supplementary Table 7. The results of D-GELS according to starting position of the 25% missing part.



Supplementary Table 8. The results of D-GELS according to starting position of the 50% missing part.



Supplementary Table 9. The results of D-GELS according to starting position of the 75% missing part.



Supplementary Table 10. Economic and technical parameters.


