Electronic Supplementary Information

Developing extended visible light responsive polymeric carbon nitrides for photocatalytic and photoelectrocatalytic applications

Sanjit Mondal^a, Gabriel Mark^a, Liel Abisdris^a, Junyi Li^a, Tirza Shmila^a, Jonathan Tzadikov^a, Michael Volokh^a, Lidan Xing^b, Menny Shalom^{*a}

^aDepartment of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.

E-mail: <u>mennysh@bgu.ac.il</u>

^bSchool of Chemistry, South China Normal University, Guangzhou 510006, China

Detailed synthetic procedures

Materials: Melamine (M, 99%) was purchased from Alfa-Aeser. Ethylene glycol (EG, \geq 99.5%) was supplied by Merck. Chloroplatinic acid (8 wt% in H₂O) was purchased from Sigma-Aldrich. Sulfuric acid (H₂SO₄, AR, 98%), was purchased from Carlo Erba. Potassium hydroxide pellets (KOH, AR, 85%) and sodium sulphate anhydrous (Na₂SO₄, AR, 99%) were purchased from Loba Chemie, India. Triethanolamine (TEOA, \geq 99.0%) was bought from Glentham, UK. 2-propanol (IPA, AR) was purchased from Bio-Lab, Israel. FTO-coated glass (12–14 Ω sq⁻¹) was bought from Xop Glass company, Spain. Additionally, deionized water (DI) with 18.2 M Ω cm resistivity was obtained from a Millipore Direct-Q 3 water purification system. All chemicals were used as received without further purification.

Characterization: The structural analysis of all synthesized materials was carried out using powder X-ray diffraction patterns (PXRD) recorded using a PANalytical's Empyrean diffractometer which is equipped with a position sensitive detector X'Celerator. Data was recorded with a scanning time of ~15 min for 2θ ranging from 5° to 70° using Cu K α radiation $(\lambda = 1.54178 \text{ Å}, 40 \text{ kV}, 30 \text{ mA})$. Fourier-transform infrared spectroscopy (FTIR) was used to study the materials' functional groups using a Thermo Scientific Nicolet iS5 FTIR spectrometer (equipped with a Si ATR). UV-vis absorption spectroscopy (Cary 100 spectrophotometer, equipped with a diffuse reflectance accessory) and photoluminescence spectroscopy (Horiba Scientific FluroMax 4 spectrofluorometer) were used to study their optical properties. Morphology of the supramolecular precursor, final PCN powder, and PCN photoelectrodes were characterized by scanning electron microscopy (SEM) using a FEI Verios high-resolution SEM (equipped with a FEG source and a TLD detector operated at $U_0 = 3.5$ kV and I = 25 pA; to avoid charging effects, some samples were sputtered with ≤ 12 nm Pt using a Quorum Q150T ES system). In addition, transmission electron microscopy (TEM) images were recorded from a Tecnai T12 G2 TWIN microscope ($U_0 = 120$ kV). TEM specimens were prepared from an IPA dispersion of the sample obtained by ultrasonication and dropcasting onto a Cu TEM grid coated with holey carbon. Elemental analysis data for carbon, hydrogen, and nitrogen (CHN) was obtained using a Thermo Scientific Flash Smart elemental analyzer OEA 2000. Analytical TEM included energy-dispersive X-ray spectroscopy (EDS) analysis, carried out on a JEOL JEM 2100F TEM $U_0 = 200$ kV equipped with a JED-2300T EDS spectrometer. Scanning TEM (STEM) was conducted on the JEOL JEM 2100F using a GATAN 806 HAADF STEM detector. Nitrogen adsorption-desorption measurements and Brunauer-Emmet-Teller (BET) analyses were performed using a Quantachrome NOVAtouch NT LX3 system following a degassing procedure at 150 °C for 12 h.

Synthesis of melem: In a typical synthesis, 10 g of melamine powder was placed in a ceramic crucible covered with a lid and calcined at 400 °C for 12 h, in a muffle furnace in the air. A heating ramp of 5 °C min⁻¹ was applied from room temperature to the target temperature was used. Pale-yellow colored solids were obtained and further ground using an agate mortar-and-pestle to obtain fine powder of melem for subsequent use.

Synthesis of supramolecular precursor: 3 mmol of melem (mlm) and 3 mmol of melamine (M) powder were added into 60 mL of an aqueous solution containing various ethylene glycol (EG) concentrations (0, 16, 32, and 50 v%) and the mixture was then shaken for 12 h. The above mixture was transferred into PTFE-lined autoclave and placed into an oven at 160 °C for 20 h. The autoclave was cooled naturally to room temperature and the resulting white slurry,

a supramolecular precursor (P_{M+mlm}), was obtained by centrifugation. For the comparison study, P_M and P_{mlm} were also synthesized by treating hydrothermally at 160 °C for 20 h (in 32 v% EG aqueous solution) either only melamine or only melem.

Synthesis of nanostructured CN (for use as a photocatalyst): The obtained supramolecular precursors (P_M , P_{mlm} , and P_{M+mlm}) were washed once with deionized water and dried under vacuum at 60 °C overnight. Next, the supramolecular powder was transferred into a ceramic crucible covered with a lid and placed in a muffle furnace at 550 °C for 4 h with 2 °C min⁻¹ heating rate under aerial condition. The sample was naturally cooled at room temperature. Light-brown powder was obtained.

Photoelectrodes preparation procedure: To construct a CN photoelectrode, the supramolecular precursor obtained after the hydrothermal treatment was centrifuged at 6000 rpm and 0.5 g of the settled slurry was ground until a homogeneous viscous paste is obtained (without addition of EG in this stage). This paste was doctor-bladed onto a clean FTO substrate with thickness of two scotch tape (3M) layers used to achieve a homogeneous coating, and subsequently dried at *ca.* 85 °C on a hot plate. The doctor-bladed FTO substrates were placed inside a closed glass test tube with 16 mm diameter. Two electrodes were kept inside the test tube and 0.5 g of melamine powder was placed at the bottom of the test tube and sealed with the aluminum foil.¹ Next, the samples were calcined at 550 °C for 4 h under continuous N₂ flow (from room temperature to the target temperature a heating rate of 5 °C min⁻¹ was used).

Photocatalytic hydrogen evolution reaction (HER): Photocatalytic HER experiments were carried out under Ar (99.999%) atmosphere at 25 °C, controlled by a circulating cooling system. Typically, a 30 mL quartz reaction vessel with 10 mL of an aqueous reaction aliquot containing 10 v% of TEOA as a sacrificial reagent and 3.7 mg of nanostructured CN catalyst in a H₂PtCl₆ aqueous solution (loading of 3 wt.% Pt relative to CN mass) was added, followed by sonication for 2-3 min to yield a homogeneous suspension. The reaction vessel was then placed in thermostatically-controlled water bath. The reaction mixture was first purged with Ar(g) for 30 min (constant stirring at 600 rpm). A white LED array (Bridgelux BXRA-50C5300, 100 W, $\lambda > 410$ nm) was used as the illuminating source. Upon light illumination, 50 µL of the generated $H_2(g)$ in the headspace of the reaction vessel was collected using a gas-tight syringe at regular intervals and analyzed by gas chromatography (Agilent 7820 GC system). The experimental error in the rate of H₂ evolution was within 7%. To study the stability of the material, after the 1st cycle, the same solution was degassed and then the 2nd cycle of the reaction performed. The apparent quantum efficiency (AQE) was measured using a sealed reactor with an Ar-line connected to an Agilent 7820 GC system. Ar was purged continuously for 15 min before turning on the light source. A Thorlabs mounted LED (wavelengths of 395, 405, 430, 455, 495, 525, and 555 nm) was used for the AQE measurement. The amount of produced H₂ was measured automatically by sampling every 11 min. The AQE was calculated using the following equation:

$$AQE = \frac{2 \times \text{Number of evolved H}_2 \text{ molecules}}{\text{Number of incident photons}} \times 100\%$$

PEC and electrochemical measurements: All the photoelectrochemical measurements were carried out using a standard three-electrode system on a PalmSens4 potentiostat. A Pt foil (1.0

cm²) and Ag/AgCl (saturated KCl) were used as the counter- and reference-electrode, respectively. 0.1 M KOH aqueous solution, (pH ~13.1) or 0.1 M KOH aqueous solution containing 10 v% triethanolamine were used as the electrolyte for the photocurrent measurements. In addition, 0.5 M H₂SO₄ and 0.5 M Na₂SO₄ aqueous solutions were also used for photocurrent measurement in acidic and neutral environments, respectively. The obtained potentials were converted to the reversible hydrogen electrode (RHE) scale using the following equation:

$$V_{\rm RHE} = V_{\rm Ag/AgCl} + 0.0591 \times pH + 0.197.$$

Photocurrents were recorded at 1.23 V bias *vs.* RHE using illumination from a solar simulator (Newport 300 W ozone free Xe arc lamp, equipped with water and air mass AM 1.5G filters) calibrated to a 1-sun illumination (100 mW cm⁻² power density, calibration Newport power meter model 919-P). For incident photon-to-current conversion efficiency (IPCE) calculations:

IPCE (%) =
$$\frac{J \text{ (mA cm}^{-2}) \cdot 1240}{\lambda \text{ (nm)} \cdot I_{\text{incident}} \text{ (mW cm}^{-2})} \times 100\%$$

where J is the measured photocurrent density, λ is the wavelength of the incident monochromic light and I_{incident} is the incident illuminating power density.

Table S1. Interaction energies values calculated from density functional theory (DFT) simulations. (All calculations were performed using the G16 software package. The equilibrium structures were optimized by B3LYP method in conjunction with the $6 \ 311 + G$ (d) basis set.)

Interaction of different	Calculated interaction energy
monomers with EG	$(E_{\rm int}, \rm kJ \ mol^{-1})$
M-EG-M	-75.9
M–EG–mlm	-81.7
mlm–EG–mlm	-86.9

Fig. S1 XRD pattern of the P_{M+mlm} .² (Melamine PDF# 391950 and for melem reference is provided)

Fig. S2 FTIR spectra of P_{M+mlm} samples with various amount of EG (volume precent of EG in water, *i.e.*, from 0 v% to 50 v%) during hydrothermal treatment. Spectra are vertically offset for clarity.

Fig. S3 SEM image of untreated (a) melamine and (b) melem.

Fig. S4 SEM images of hydrothermally treated precursors of P_{M+mlm} with various amounts of EG content: (a) no EG (*i.e.*, 0 v%), (b) 16 v% EG, (c) 32 v% EG, and (d) 50 v% EG.

Fig. S5 FTIR spectra of the CN_M , CN_{mlm} , and CN_{M+mlm} samples. Spectra are vertically offset for clarity.

Fig. S6 SEM images at two magnifications of the final CN powders. (a1,a2) CN_M, (b1, b2), CN_{mlm}, and (c1, c2) CN_{M+mlm}.

Fig. S7 SEM images of final CN_{M+mlm} samples prepared by calcination of P_{M+mlm} precursor in varying EG content: (a) no EG, (b) 16 v% EG, (c) 32 v% EG, and (d) 50 v% EG.

Fig. S8 TEM images of CN_{M+mlm} at different magnifications.

Fig. S9 XPS survey spectra of $CN_M,\,CN_{mlm},\,and\,CN_{M^+mlm}$ samples.

Fig. S10 C1s XPS spectra of CN_M , CN_{mlm} , and CN_{M+mlm} samples (etch time 60 s).

Fig. S11 XPS survey spectra of CN_{M^+mlm} with various EG content.

Fig. S12 Digital photographs of melamine in (a) ethylene glycol, (b) water.

Fig. S13 (a) C1s and (b) N1s XPS spectra of CN_{M+mlm} with various EG content.

Table S2. Relative ratios of groups in N 1s XPS spectra for CN with various EG content.

Sample	Ру	NH ₂	NH	Q
CN_{Water}	80.1	1.60	9.36	8.82
$\rm CN_{16V\%EG}$	75.2	3.25	11.82	9.70
CN _{32V% EG}	70.6	6.30	13.18	10.0
CN _{50V% EG}	73.5	5.15	12.36	8.99

Table S3. Elemental analysis data, atom% of (a) CN_M , CN_{mlm} , and CN_{M+mlm} . (b) Elemental analysis data of CN_{M+mlm} samples with various amount of EG during the hydrothermal treatment.

1	`
10	۱ ۱
10	
<u>ر</u> -	- /

Sample	N (%)	C (%)	H (%)	O (%)	C/N ratio
CN _M	46.40	30.39	21.15	2.49	0.654
CN _{mlm}	44.28	29.68	22.59	3.43	0.670
CN_{M+mlm}	43.53	29.83	23.44	3.18	0.685

(b)

Sample	N (%)	C (%)	H (%)	0 (%)	C/N ratio
CN_{M+mlm} (0 v% EG)	45.06	29.25	22.72	2.95	0.649
CN_{M^+mlm} (16 v% EG)	44.57	29.36	22.96	3.09	0.659
CN_{M+mlm} (32 v% EG)	43.53	29.83	23.44	3.18	0.685
CN_{M+mlm} (50 v% EG)	44.97	30.38	21.93	2.70	0.675

Fig. S15 UV–vis DRS spectra of CN_M, CN_{mlm}, and CN_{M+mlm} samples.

Fig. S16 UPS valance band spectrum of (a) CN_M and (b) CN_{mlm} .

The VB energies (E_{VB}) of CN_M, CN_{mlm}, and CN_{M+mlm} were calculated to be 7.04 eV, 7.07 eV, and 6.37 eV, respectively, by subtracting the width of HeI-UPS spectra from the excitation energy ($E_{ex} = 21.21 \text{ eV}$). The CB energy (E_{CB}) is thus estimated at 4.11 eV, 4.06 eV, and 3.82 eV, respectively, from $E_{VB} - E_g(\text{optical})$. The E_{VB} and E_{CB} values of CN_M, CN_{mlm}, and CN_{M+mlm} (eV) could be converted to an electrochemical energy potential using a standard reference scale where 0 V *vs*. RHE (reversible hydrogen electrode) equals 4.44 eV *vs*. E_{vac} (vacuum level).³ The calculated E_{VB} *vs*. RHE of CN_M, CN_{mlm}, and CN_{M+mlm} are 2.61, 2.62 and 2.20 V, respectively.

Fig. S17 Nitrogen sorption isotherms (77 K) and specific surface area (S_A) estimation using the BET model for (a) $CN_M [S_A = 14 \text{ m}^2 \text{ g}^{-1}]$, (b) $CN_{mlm} [S_A = 187 \text{ m}^2 \text{ g}^{-1}]$, and (c) $CN_{M+mlm} [S_A = 134 \text{ m}^2 \text{ g}^{-1}]$.

Fig. S18 Nitrogen sorption isotherms (77 K) and specific surface area (S_A) estimation using the BET model for CN_{M+mlm} prepared using variable EG content.

Table S4. HER photocatalytic activity of CN-based materials.

Photocatalyst	Method	Light source	Catalyst	BET S _A	Experimental	HER rate	AQE (%)	Ref.
			mass	(m² g ⁻¹)	conditions	(µmol g ⁻¹ h ⁻¹)		
CN _{M+mIm}	Melamine-EG-mlm	100 W	3.8 mg	131	3 wt. % Pt, 10 vol. %	23120	19.2 @	This
	supramolecular assembly via	white LED,			TEOA		395 nm	work
	autoclave treatment followed	λ > 410 nm						
	by calcination.							
CN-2-CI-mlm	Melem-halogen supramolecular	100 W	7.5 mg	78.5	3 wt. % Pt, 10 vol. %	8952	9.05 @	[4]
	assembly, followed by thermal	white LED,			TEOA		415 nm	
	condensation.	λ > 410 nm						
CN-MS	Supramolecular assembly with a	50 W white	15 mg	25.61	3 wt. % Pt. 10 vol. %	838	1.6 @ 405	[5]
	thiol-containing monomer.	LED. $\lambda > 410$			ΤΕΟΑ		nm	
	followed by thermal	nm)						
	condensation.	,						
CN-3MeTAP	Melem-based supramolecular	100 W	15 mg	100.0	3 wt. % Pt, 10 vol. %	8075	15.2 @	[6]
	assembly, followed by thermal	white LED,			TEOA		405 nm	
	condensation.	λ > 410 nm						
CN-CMT ₂	Supramolecular assembly	100 W	15 mg	-	3 wt. % Pt, 10 vol. %	1757	6 @ 405	[7]
	followed by thermal	white LED,			TEOA		nm	
	condensation with an additive.	λ > 410 nm						
		1	1	1	1	1		

soluble g-C ₃ N ₄	Melamine thermal	Four 3 W	50 mg	-	1 wt. % Pt, 10 vol. %	359.6	-	[8]
(SCN)	condensation and a freeze-	and 420 nm			lactic acid			
nanosheets	drying process.	low-power						
		LEDs						
		-						
CNU _{0.075}	Dicyandiamide and uracil in a	300 W Xe	50 mg	11.41	3 wt. % Pt, 10 vol. %	4243.62	-	[9]
	hydrothermal method followed	arc lamp			TEOA			
	by thermal condensation.							
PCNS-2	Thiourea and NH ₄ Cl thermal	300 W Xe	15 mg	126.7	10 vol. % TEOA	~340	-	[10]
	condensation.	lamp +						
		cutoff filter						
		(λ > 420 nm)						
		· · ·						
NCDs/DCN	Citric acid and urea with a	300 W Xe	50 mg	51.77	In 50 mL water the	626.93	-	[11]
	hydrothermal method.	lamp +			photocatalyst and			
		cutoff filter,			0.5 mg of dispersed			
		λ > 420 nm)			RhB.			
CNBYO-2	Urea thermal condensation.	PLS-SXE	20 mg	55.78	10 vol. % TEOA	37.65	_	[12]
	BiYO ₃ was prepared by a	300UV Xe						
	hydrothermal method. Then	arc lamp +						
	electrostatic self-assembly.	cutoff filter						
		(λ > 400 nm)						

Exfoliated and	$g-C_3N_4$ urea via thermal	four 365 nm	-	-	2 wt. % Pt, 10 vol. %	3810	5.2 @ 405	[13]
g-C ₃ N ₄ mixture	condensation. Exfoliation with a	LEDs (21			TEOA		nm	
	mixture of nitric and sulfuric	mW cm ⁻²						
	acids.	total)						
R-CN-350	CVD method using melamine as	Xe lamp	10 mg	29.9	3 wt. % Pt, 10 vol. %	1900	-	[14]
	the precipitating precursor. SiO ₂	(300 W) +			TEOA			
	the template, removed with 4 M	420 nm						
	NH_4HF_2 .	filter						
H-PHI	Dicyandiamide, KSCN, and	Xe arc-lamp	14–20 mg	-	2 wt. % Pt, 10 vol. %	3364	-	[15]
	potassium melonate penta-	(300 W)			EtOH			
	hydrate thermal condensation	equipped						
	under inert atmosphere,	with a 1.5						
	followed by HCl etching.	Global AM						
		filter						
		working at						
		100 mW						
		cm ^{−2}						
CN-Mo _{0.2}	Uracil	Хе	50 mg	56	3 wt. % Pt, 10 vol. %	2008.9	3.72 @	[16]
	ammonium molybdate and	lamp (300			TEOA		420 nm	
	melamine assembly through a	W) + 420						
	hydrothermal method.	nm cutoff						
	Thermal condensation.	filter						
Ag-N ₂ C ₂ /CN	Melamine, AgNO ₃ , citric acid,	300 W Xe	20 mg	105.02	10 vol. % TEOA	1866	-	[17]
	and cyanuric acid	lamp + long						
	supramolecular assembly, then	pass cutoff						
	thermal condensation.							

		filter (λ >						
		420 nm)						
2AP-CN-15	Urea and 2-aminopyridine	300 W Xe	20 mg	135.663	3 wt. % Pt, 20 vol. %	6317.5	20.1 @	[18]
	thermal condensation.	lamp			ΤΕΟΑ		420 nm	
		+ 420 nm						
		cutoff filter						
A-V-g-C ₃ N ₄	Dicyandiamide in a high-	PLS-	50 mg	267.1	1 wt. % Pt, 10 vol. %	3700	14.98	[19]
	temperature treatment and	SXE300CBF			TEOA		@ >420	
	two-step thermal exfoliation	Xe arc + 420						
	process.	nm cutoff						
		filter						
1.5CCN650	Melamine and KF assembly in	Xe lamp +	10 mg	-	3 wt. % Pt, 10 vol. %	1889	4.1	[20]
	ethanol, then thermal	420 nm			ΤΕΟΑ			
	condensation.	filter						
		100 mW						
		cm ⁻²						

BF _{0.065} -g-C ₃ N ₄	Basic fuchsin and urea	300 W Xe	50 mg	87.19	3 wt. % Pt, 10 vol. %	1619.0	-	[21]
	copolymerization method,	lamp + 420			ΤΕΟΑ			
	followed by thermal	nm cutoff						
	condensation.	filter						
MoS ₂ /g-C ₃ N ₄	g-C ₃ N ₄ nanosheets and	100 W Xe	50 mg	94.87	0.1 M TEOA	1155	6.8 @ 420	[22]
nanosheets	ammonium tetra-	lamp +					nm	
	thiomolybdate in DMF via	cutoff filter						
	solvent-thermal method.	(λ > 420 nm)						
		200.14.14	50	46.74		450		[22]
CN-10	Dicyandiamide and NaCl	300 W Xe	50 mg	16.71	3 wt. % Pt, 25 vol. %	459	2.2@420	[23]
	assembly in ethanol and water,	lamp + UV-			lactic acid		nm	
	followed by thermal	cutoff filter						
	condensation.	(<i>λ</i> > 400						
		nm).						
CN-MP0.1	Urea and 2,6-	300 W Xe	50 mg	160.60	3 wt. % Pt, 10 vol. %	2936.2	-	[24]
	dimethylmorpholine through	lamp (at 15			ΤΕΟΑ			
	direct co-polymerization route,	cm						
	followed by thermal	distance) by						
	condensation.	using						
		suitable						
1		1	1	1		1	1	1

		extended						
		permit cut-						
		off (λ > 420						
		nm)						
PCN-SA-d	Succinic acid in liquid urea with	Xe lamp	20 mg	68.1	3 wt. % Pt, 10 vol. %	8520	5.6 @ 420	[25]
	thermal condensation.	equipped			TEOA		nm	
		with a						
		CEL-						
		UVIRCUT						
		420 cutoff						
		filter ($\lambda \ge$						
		420 nm),						
		~425 mW						
		cm ⁻²						
TSC-550	Thiosemicarbazide (TSC)	Xe lamp	50 mg	95.2	3 wt. % Pt, 10 vol. %	9768	14.6 @	[26]
	powder thermal condensation.	(300 W) +			TEOA		425 nm	
		UV-cutoff						
		filter (λ						
		> 420 nm)						
Nic-CN	Melamine and nicotinic acid	300 W Xe	20 mg	40.95	1 wt. % Pt, 10 vol. %	6310	6.81 @	[27]
	assembly through	lamp (λ >			EtOH		420 nm	
	hydrothermal method followed	420 nm)						
	by thermal condensation.							

PCN-BPT ₁₅	Urea and 1-benzyl-3-	300 W Xe	50 mg	117.4	1 wt. % Pt, 20 vol. %	2500	24.2 @	[28]
	phenylthiourea (BPT), thermal	lamp (λ >			TEOA		420 nm	
	condensation.	420 nm)						
CN-M ₁₀ TAP _{0.05}	2,4,6- triaminopyrimidine (TAP)	100 W LED	15 mg	99.7	3 wt. % Pt, 10 vol. %	10160	20.0 @	[29]
	and melem thermal	lamp (λ >			ΤΕΟΑ		405 nm	
	condensation	410 nm)						

Fig. S19 TEM analysis of CN_{M+mlm} catalysts after the 5th HER cycle: (a, b) TEM images, (c, d) STEM images, (e) HRTEM image, and (f) Selected area electron diffraction (SAED) pattern.

Fig. S20 Photograph of CN_{M+mlm} in water showing high dispersibility of CN.

Fig. S21 Digital photographs of CN_{M+mlm} photoelectrodes obtained after calcination in air (left) and under N₂ atmosphere (right).

Fig. S22 CN_M , CN_{mlm} , and CN_{M+mlm} on FTO-coated glass electrodes characterization. (a) XRD, (diffraction signals of the FTO stem mainly from SnO₂ (marked with an *), JCPDS 77-0447). (b) FTIR, (c) UV–vis DRS, (d) Photoluminescence emission spectra (excitation wavelength 375 nm).

Fig. S23 SEM images of (a) CN_M and (b) CN_{mlm} electrodes.

Fig. S24 Front- and back-illuminated chronoamperometry (on/off illumination cycles) of CN_{M+mlm} electrode.

Fig. S25 Chronoamperometry: current density (on off illumination cycles) of CN_{M+mlm} electrode in different electrolytes neutral (0.5 M Na₂SO₄, pH 6.27), and acidic (0.5 M H₂SO₄, pH 0.27), plotted in black and red, respectively.

Fig. S26 N1s XPS spectra of CN_{M+mlm} electrode before and after PEC stability experiment.

Fig. S27 SEM analysis of CN_{M+mlm} after a stability test. (a, b) Top-view images (inset of 'a' is photographic image of the electrode after 5 h stability test). (c, d) Cross-section image.

Electronic Supplementary Information References

- [1] L. Abisdris, J. Tzadikov, N. Karjule, A. Azoulay, M. Volokh and M. Shalom, *Sustain. Energy Fuels*, 2020, **4**, 3879–3883.
- [2] M. Nikookar, A. Rezaeifard, M. Jafarpour, K. V Grzhegorzhevskii and A. A. Ostroushko, *RSC Adv.*, 2021, **11**, 38862–38867.
- [3] Y. Yang, J. Chen, Z. Mao, N. An, D. Wang and B. D. Fahlman, *RSC Adv.*, 2017, 7, 2333–2341.
- [4] G. Mark, S. Mondal, M. Volokh, J. Xia, M. Shalom, *Sol. RRL* 2022, 2200834, 1–9.
- [5] N. Karjule, J. Barrio, A. Tashakory, M. Shalom, Sol. RRL 2020, 4, 2000017.
- [6] J. Xia, N. Karjule, B. Mondal, J. Qin, M. Volokh, L. Xing, M. Shalom, J. Mater. Chem. A 2021, 9, 17855–17864.
- [7] N. Karjule, L. Abisdris, A. Azoulay, M. Volokh, M. Shalom, *Adv. Energy Sustain. Res.* 2022, 2200035, 2200035.
- [8] X. Wu, X. Wang, F. Wang, H. Yu, Appl. Catal. B Environ. 2019, 247, 70–77.
- [9] Y. Huang, D. Li, Z. Fang, R. Chen, B. Luo, W. Shi, *Appl. Catal. B Environ.* 2019, 254, 128–134.
- [10] Y. Zhou, W. Lv, B. Zhu, F. Tong, J. Pan, J. Bai, Q. Zhou, H. Qin, ACS Sustain. Chem. Eng. 2019, 7, 5801–5807.
- [11] H. Liu, J. Liang, S. Fu, L. Li, J. Cui, P. Gao, F. Zhao, J. Zhou, Colloids Surfaces A Physicochem. Eng. Asp. 2020, 591, 124552.
- [12] R. Ma, L. Dong, B. Li, T. Su, X. Luo, Z. Qin, H. Ji, *ChemistrySelect* 2018, 3, 5891–5899.
- [13] K. L. Corp, C. W. Schlenker, J. Am. Chem. Soc. 2017, 139, 7904–7912.
- [14] L. Cui, J. Song, A. F. McGuire, S. Kang, X. Fang, J. Wang, C. Yin, X. Li, Y. Wang, B. Cui, *ACS Nano* 2018, *12*, 5551–5558.
- [15] H. Schlomberg, J. Kröger, G. Savasci, M. W. Terban, S. Bette, I.
 Moudrakovski, V. Duppel, F. Podjaski, R. Siegel, J. Senker, R. E. Dinnebier,
 C. Ochsenfeld, B. V Lotsch, *Chem. Mater.* 2019, *31*, 7478–7486.
- [16] Y. Wang, Y. Zhang, S. Zhao, Z. Huang, W. Chen, Y. Zhou, X. Lv, S. Yuan,

Appl. Catal. B Environ. 2019, 248, 44–53.

- [17] X. Jiang, L. Zhang, H. Liu, D. Wu, F. Wu, L. Tian, L. Liu, J. Zou, S. Luo, B. Chen, Angew. Chem. 2020, 59, 23112–23116.
- [18] C. Li, H. Wu, D. Zhu, T. Zhou, M. Yan, G. Chen, J. Sun, G. Dai, F. Ge, H. Dong, *Appl. Catal. B Environ.* 2021, 297, 120433.
- [19] J. Zhang, J. Chen, Y. Wan, H. Liu, W. Chen, G. Wang, R. Wang, ACS Appl. Mater. Interfaces 2020, 12, 13805–13812.
- [20] L. Zhang, Z. Jin, S. Huang, X. Huang, B. Xu, L. Hu, H. Cui, S. Ruan, Y.-J. Zeng, *Appl. Catal. B Environ.* **2019**, *246*, 61–71.
- [21] H. Zhang, J. Lin, Z. Li, T. Li, X. Jia, X. Wu, S. Hu, H. Lin, J. Chen, J. Zhu, *Catal. Sci. Technol.* 2019, 9, 502–508.
- [22] Y. Yuan, Z. Shen, S. Wu, Y. Su, L. Pei, Z. Ji, M. Ding, *Appl. Catal. B Environ*.
 2019, 246, 120–128.
- [23] F. Yang, D. Liu, Y. Li, L. Cheng, J. Ye, *Appl. Catal. B Environ.* 2019, 240, 64–71.
- [24] A. Hayat, N. Shaishta, I. Uddin, M. Khan, S. Kumar, B. Mane, A. Hayat, I.
 Ullah, A. Ur, T. Ali, G. Manjunatha, J. Colloid Interface Sci. 2021, 597, 39–47.
- [25] T. Huo, G. Ba, Q. Deng, F. Yu, G. Wang, H. Li, *Appl. Catal. B Environ.* 2021, 287, 119995.
- [26] C. Cheng, C. Dong, J. Shi, L. Mao, Y. Huang, J. Mater. Sci. Technol. 2022, 98, 160–168.
- [27] Q. Li, L. Zhang, J. Liu, J. Zhou, Y. Jiao, X. Xiao, C. Zhao, Y. Zhou, S. Ye, B. Jiang, J. Liu, Small 2021, 17, 2006622.
- [28] X. Zhou, B. Xu, J. Zhang, Q. Zhao, C. Li, H. Dong, X. Wang, J. Yang, Int. J. Hydrogen Energy 2021, 46, 38299–38309.
- [29] J. Xia, N. Karjule, G. Mark, M. Volokh, H. Chen, M. Shalom, *Nano Res.* 2022, 15, 10148–10157.