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S1. Fast-OGN accuracy for different atomistic systems 

We validate herein the prediction accuracy of Fast-OGN that adopts 2 MPNN layers to simulate the four 

atomistic systems (i.e., LJ, SiO2, Si, and Cu64.5Zr35.5), where k = 5 MD steps for LJ and 10 for other systems. 

Note that the number of MPNN layers and the timestep (i.e., k MD steps per prediction) have been finely 

tuned to balance the OGN accuracy and its execution speed (see Sec. S8 and S9). Figure S1A shows the 

test set loss L as a function of the number of training epochs for each of the four Fast-OGNs, where the 

result of a Reference-OGN that adopts 10 MPNN layers and k = 1 is added for comparison, which is the 

OGN we use whenever Fast-OGN is not specified. As expected, the Fast-OGNs show larger loss L than 

that offered by their Reference-OGNs at the end of the training (i.e., after 1000 training epochs), but the 

magnitude of the loss L in each Fast-OGN remains satisfactory (10-2) to offer an accurate prediction of next-

step atom positions and velocities. We then examine the Fast-OGNs’ ability to predict atomic trajectories. 

Figure S1B shows a comparison of true versus predicted 100-MDsteps atomic trajectories for randomly 

selected atoms in a test configuration for each atomistic system, where the predicted atomic trajectories 

exhibit an excellent agreement with that offered by the ground-truth simulation. Further, Figure S1C 

provides the density scatter plot of the predicted versus true atom positions and velocities (along x-, y-, and 

z-axis) at the last step for each system. By computing the root mean square error (RMSE) of position and 

velocity, we find that the position error is an order of magnitude smaller than the length scale of cage effect 

in each system (see Sec. S2), that is, within the scope of atomic vibrations [1,2], and that the velocity error 

is also minuscule compared to the atom velocity scale of each system (see Sec. 2.2 in the main text). Overall, 

these results demonstrate that the Fast-OGN can offer an accurate prediction of atomic motions and, more 

explicitly, simulate the near-future atomic trajectories with a fine resolution of capturing the atomic 

vibrations. 
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Fig. S1: Fast-OGN accuracy for different atomistic systems. (A) The evolution of test set 

loss L as a function of the number of training epochs for LJ, SiO2, Si, and Cu64.5Zr35.5 liquid, 

respectively, by using a Fast-OGN that adopts 2 MPNN layers and k = 5 MD steps for LJ and 

10 for other systems. For each system, the result of a Reference-OGN using 10 MPNN layers 

and k = 1 is added for comparison. (B) True (left panel) versus predicted (right panel) 100-

MDsteps atomic trajectories for randomly selected atoms in a test configuration under NVE 

ensemble for LJ, SiO2, Si, and Cu64.5Zr35.5, respectively. Note that, due to its low diffusivity, 

we extend the trajectory of Cu64.5Zr35.5 to 400 MD steps for visibility. (C) Density scatter plot 
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of the predicted versus true atom positions (left panel) and velocities (right panel) (along x-, y-, 

and z-axis) in the test configuration at the last step for LJ, SiO2, Si, and Cu64.5Zr35.5, 

respectively. The y = x line (dash line) is added as a reference. 

 

 

S2. Cage effect in different atomistic systems 

As a reference to the magnitude of position error in OGN prediction, we compute herein the length scale of 

cage effect [1,2] in each of the four atomistic systems (i.e., LJ, SiO2, Si, and Cu64.5Zr35.5). Figure S2 shows 

the root mean square displacement per atom D(t) as a function of MD time t for the four system. We find 

that, at the short-time regime of atom motions, each atom can freely diffuse without encountering any 

obstacles, that is, the neighbor atoms around, and therefore, the atom displacement D(t) is linearly 

proportional to the diffusion time t, i.e., D(t) ∝ t [2]. Then, when entering into the long-term diffusion regime, 

the atom diffusion is slowed down by the existing obstacle arising from the atom’s first coordination shell—

that is, the cage effect [1,2], which leads to a root square dependance of atom displacement D(t) on the 

diffusion time t, i.e., D(t) ∝ t1/2 [2]. Here, we define the length scale of cage effect as the value of D(t) that 

starts to exhibit the root square dependance on time t. Based on this definition, we find that the length scale 

of cage effect is 0.4 (LJ unit), 1.4 Å, 2.0 Å, and 1.0 Å for LJ, SiO2, Si, and Cu64.5Zr35.5, respectively. 
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Fig. S2: Cage effect in different atomistic systems. Root mean square displacement per atom 

D(t) as a function of MD time t for (A) Lennard–Jones (LJ) [3], (B) silica (SiO2) [4], (C) 

silicon (Si) [5], and (D) Cu64.5Zr35.5 liquid [6], respectively, where the short-term atom motions 

follow the free diffusion model [2], i.e., D(t) ∝ t (dash line), and the long-term atom diffusion 

is slowed down by the cage effect [1,2] (i.e., the free volume associated with the atom’s first 

coordination shell) and exhibits a root square dependance on diffusion time [2], i.e., D(t) ∝ t1/2 

(dash line). The horizonal green line indicates the length scale of cage effect in each system. 

 

 

S3. Simulation error accumulation over iterations in OGN 

We provide herein an example of simulation error accumulation over iterations in OGN. Figure S3A and 

S3B provide the root mean square error (RMSE) per atom of respectively, atom positions and velocities in 
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a test LJ configuration, as a function of the prediction steps. We find that the prediction error is minuscule 

at the very first steps. However, it accumulates over steps and eventually results in a sudden, spurious surge 

at the late stage (i.e., after 100 steps herein). Further, Figure S3C shows a comparison of true versus 

predicted 200-steps atomic trajectories for randomly selected atoms in the test configuration. Indeed, the 

first half of the trajectories exhibit an excellent agreement with the ground-truth simulation, while the 

second half start to deviate from the true trajectories due to the spurious effect arising from error 

accumulation. As such, we restrict the scope of OGN to predict the near-future atomic trajectories. 

 

Fig. S3: Simulation error accumulation over iterations in OGN. Root mean square error 

(RMSE) per atom with regard to MD steps for (A) atom positions and (B) velocities in a test 

LJ configuration. The grey window indicates the spurious effect arising from error 

accumulation. (C) True versus predicted 200-steps atomic trajectories for randomly selected 

atoms in the test configuration. 
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S4. Influence of the error accumulation on system-level quantities 

 

Fig. S4: Effect of error accumulation on system-level quantities. Predicted versus true (A) 

root mean square displacement per atom D(t) and (B) system energy as a function of MD time 

t, by taking the example of LJ liquid. The grey window indicates the stage where the error 

accumulation results in a spurious surge in particle-level prediction, i.e., after 100 MD steps 

(see Fig. S3). The timestep is set as 0.005, and the simulation contains 2000 MD steps. 

 

We now investigate the influence of error accumulation at particle level on system-level quantities. Figure 

S4A provides the OGN-predicted versus true root mean square displacement (RMSD) per atom as a 
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various atomic positions and velocities, the OGN model remains energy conservation for the predicted 

erroneous configurations over iterations. As such, the system-level quantities computed by OGN simulation 

can exhibit some extent of tolerance to particle-level errors. 

 

S5. Generalizing system size by OGN 

As a scenario of challenging prediction, we further investigate the extrapolability of OGN when generalized 

to different system size. Note that the configurations in our training set are built using a small box size of 2 

× rc (neighbor-list cutoff) to promote the training efficiency (see Methods section in the main text). Indeed, 

by inputting an atomic graph built on a local neighbor-list, OGN is intrinsically insensitive to the global 

system size of a simulation configuration [7], assuming that the system density remains invariant—

otherwise the OGN exhibits only limited extrapolability (see Sec. S7). Figure S5A shows an example of 

system size generalization of OGN, where the OGN is trained by a training set of 265-atoms LJ 

configurations, and once trained, can predict the dynamics of an enlarged system of 8000 atoms without 

deteriorating the simulation accuracy, wherein, after a rollout of 100 steps, the predicted versus true atom 

positions and velocities are well located in the vicinity of y = x identity line (see Fig. S5B). Further, Figure 

S5C provides the root mean square error (RMSE) per atom as a function of system size N for the 100-steps 

rollout prediction of position and velocity offered by the OGN. It is notable that the RMSE of both position 

and velocity remains fairly small and stable as the OGN extrapolates from N = 265 atoms up to 10000 

atoms. Overall, these results demonstrate that the OGN is a versatile tool to train efficiently by small 

configurations but easily generalize to simulate very large, complex systems. 
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Fig. S5: Generalizing system size by OGN. (A) System size generalization of OGN, by 

taking the example of binary Lennard–Jones (LJ) A80B20 liquid [3]. The OGN is trained by 

small configurations (left panel, system size N = 265 atoms) and can generalize to predict large 

configurations (e.g., N = 8000 atoms). (B) Density scatter plot of the predicted versus true 

atom positions (left) and velocities (right) (along x-, y-, and z-axis) in an 8000-atoms test 

configuration after 100 steps. The y = x line (grey dash) is added as a reference. (C) Root 

mean square error (RMSE) per atom as a function of system size N for position (black square) 

and velocity (red circle) after a rollout of 100 steps. The horizonal green lines are RMSE 

guides for the eyes. 
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S6. Generalizing system temperature by OGN 

 

Fig. S6: Generalizing system temperature by OGN. (A) Temperature generalization of 

OGN. The OGN is trained by liquid LJ configurations at an equilibrium temperature T ≈ 3.0 

and can extrapolate to systems at different temperatures. The left panel shows the distribution 

of atom velocities in a test configuration at a higher temperature T ≈ 5.0 (orange), and the 

velocity distribution in the training set is added as a reference (T ≈ 3.0, blue). The right panel 

shows the true (left) versus predicted (right) 100-steps atomic trajectories for randomly 

selected atoms in the test high-T configuration under NVE ensemble. (B) RMSE per atom as a 

function of system temperature T for position (black square) and velocity (red circle) after a 

rollout of 100 steps. Here, T ranges above the system’s glass transition temperature (Tg ≈ 0.3) 

to activate atom motions [3,11]. The quadratic green lines are RMSE guides for the eyes. 
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velocity offered by the OGN. Interestingly, we find that both the RMSE of position and velocity are 

quadratically proportional to system temperature T, namely,  

RMSE(T) ∝ T2                                      Eq. (S1) 

which echoes the quadratic relation between system temperature and atom velocities [8], viz., EK = (1/2)mv2 

= (3/2)kBT, where EK is the average kinetic energy per atom, v2 is the average squared velocity per atom, 

and kB is the Boltzmann constant. Importantly, this quadratic relation guides us to extrapolate the OGN over 

a wide range of temperatures and allows us to properly estimate the high temperature limit. From a practical 

viewpoint, we expect that the extrapolability of OGN makes it possible to simulate extreme conditions (e.g., 

very-large-scale system size and ultrahigh system temperature [9]) more challenging than the training set to 

monitor by traditional experiments or simulations [10].  

 

S7. Generalizing system density by OGN 

We investigate herein the extrapolability of OGN when generalized to different system densities. To this 

end, we train an OGN by a training set of LJ configurations whose number density of atoms 𝜌0 = 1.2, the 

same as that used in the main text, and validate its extrapolability to different system densities. Figure S7A 

shows the root mean square error (RMSE) per atom as a function of the number density of atoms 𝜌 for atom 

positions and velocities in a test configuration after a rollout of 100 steps, where the configuration contains 

265 atoms and changes its box size to match the preset density and, subsequently, has been relaxed to an 

equilibrium liquid temperature T ≈ 3.0 under NVE ensemble. As expected, we find that the OGN exhibits 

the lowest prediction error at the density prescribed to the training set. When system density is further away 

from the training density, both the position error and velocity error increases evidently, which is not 

surprising as the OGN has not been exposed to these system densities (i.e., different graph sparsity [12]). 

Further, Figure S7B shows a comparison of true versus predicted 100-steps atomic trajectories for randomly 

selected atoms in a test configuration with a density of 𝜌/𝜌0 = 0.8. Indeed, we find that the OGN fails to 



 13 

offer an accurate prediction of atomic motions in the less dense system, where the atoms exhibit higher 

mobility [1,2,11]. However, we nevertheless notice that the trajectories at the very first steps exhibit a good 

agreement with the ground-truth simulation, suggesting that the OGN still possesses some extent of 

extrapolability (despite limited) to different system densities at the vicinity of the training density. 

 

Fig. S7: Generalizing system density by OGN. (A) Root mean square error (RMSE) per 

atom as a function of its number density of atoms 𝜌 for position (black square) and velocity 

(red circle) in a LJ test configuration after a rollout of 100 MD steps. The OGN is trained by a 

training set of 265-atoms configurations with a density 𝜌0 = 1.2. The test configuration 

contains 265 atoms and adjusts its box side length to match the preset density 𝜌. The system 

has been relaxed to an equilibrium liquid temperature T ≈ 3.0 under NVE ensemble. (B) True 

(left panel) versus predicted (right panel) 100-steps atomic trajectories for randomly selected 

atoms in a test configuration extrapolated to a lower density 𝜌/𝜌0 = 0.8. 
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S8. Influence of the number of MPNN layers on OGN accuracy 

 

Fig. S8: Influence of the number of MPNN layers on OGN accuracy. (A) The evolution of 

test set loss L as a function of the number of training epochs for OGNs that adopts, 

respectively, 1, 2, 4, 6, 8, and 10 MPNN layers to simulate LJ system, where k = 1 MD step 

per prediction. (B) The test set loss L after 1000 training epochs with respect to the number of 

MPNN layers. The blue line is to guide the eye. 

 

We examine herein the influence of the number of MPNN layers on the accuracy of OGN prediction. To 

this end, we train the OGNs that adopt different number of MPNN layers (i.e., from 1 to 10 layers herein), 

relying on the same training and test sets of LJ configurations as that used in the main text. Figure S8A 

shows the evolution of test set loss L as a function of the number of training epochs for these OGNs. We 

find that more MPNN layers tend to enhance the model’s learning performance and exhibits smaller loss L 

at the end of the training. This is expected as more MPNN layers significantly increases the model 

complexity and, hence, its flexibility to interpolate the training set [7,13], and, at the same time, more 

succession of MPNN layers means more layer-by-layer message-passing, allowing each node to receive the 

1 2 3 4 5 6 7 8 9 10
Number of MPNN layers

0

2

4

6

8

Lo
ss

 fu
nc

tio
n 

L 
(×

 1
0−4

)

0 200 400 600 800 1000
Number of training epochs

10-5

10-4

10-3

10-2

10-1

100

Lo
ss

 fu
nc

tio
n 

L

10 layers
8 layers
6 layers
4 layers
2 layers
1 layers

A B

Test set

LJ

k = 1

2 MPNN layers: tradeoff between 
model accuracy and simplicity

1000 training epochs



 15 

updated message from further distant nodes and edges (beyond the neighbor-list cutoff rc) that may 

potentially affect the dynamics of the central node [12,14]. Further, Figure S8B shows the test set loss L after 

1000 training epochs with respect to the number of MPNN layers. We find that, when using more than 2 

MPNN layers, the model exhibits an accuracy enhancement that becomes inconsiderable and enters into a 

plateau. As such, we select 2 MPNN layers as a reasonable tradeoff that offers the balance between model 

accuracy and simplicity [15,16] to construct Fast-OGN. Note, however, that, in the main text, if not specified 

as Fast-OGN, all OGNs nevertheless adopts 10 MPNN layers to offer an unlimited learning capacity. 

 

S9. Influence of the timestep k (dt) on OGN accuracy 

Finally, we investigate the influence of the timestep k (dt), i.e., k MD steps per prediction, on the accuracy 

of OGN prediction. To this end, we train the OGNs that adopt 2 MPNN layers and different k value (herein 

we select k = 1, 5, 10, and 20) to simulate LJ system. Figure S9A shows the evolution of test set loss L as a 

function of the number of training epochs for these OGNs. We find that longer timestep tends to challenge 

the model’s learning performance and results in evidently increased loss L at the end of the training. Indeed, 

longer timestep involves more significant atom reorganizations and, hence, the present structure (and its 

graph geometry thereof) is less relevant to the long-term atom dynamics [17]. Moreover, herein the OGNs 

adopt only 2 MPNN layers, which may not be adequate to allow the graph information update thoroughly 

to capture the long-term graph dynamics [13,14]. Further, Figure S9B shows the test set loss L after 1000 

training epochs with respect to the different timestep k (dt). We find that, when exceeding k = 5 (or up to 

10), the model exhibits an evident accuracy deterioration that exponentially increases with k. As such, we 

select k = 5 as a reasonable tradeoff that offers the balance between model accuracy and timestep (viz., 

execution speed). Note, however, that, in the main text, if not specified as Fast-OGN, all OGNs adopts k = 

1 to emulate the ground-truth MD simulator. 
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Fig. S9: Influence of the timestep k (dt) on OGN accuracy. (A) The evolution of test set 

loss L as a function of the number of training epochs for OGNs that adopts 2 MPNN layers to 

simulate LJ system, with k = 1, 5, 10, and 20 MD steps per prediction, respectively. (B) The 

test set loss L after 1000 training epochs with respect to the timestep k (dt). The blue line is to 

guide the eye. 
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accuracy per step for the Fast-OGN that simulate glassy-state LJ dynamics, well before its prediction error 

increases exponentially with longer timestep and becomes evidently unsatisfactory. 

 

Fig. S10: Fast-OGN timestep k (dt) for the melt-quenched LJ glass. (A) The evolution of 

test set loss L as a function of the number of training epochs for Fast-OGN that simulate 

glassy-state LJ dynamics, with k = 10, 20, and 40 MD steps per prediction, respectively. (B) 

The test set loss L after 1000 training epochs with respect to the timestep k (dt). The blue line 

is to guide the eye. The grey window indicates the range of Fast-OGN timestep with both 

satisfactory time span and prediction accuracy per step, i.e., error-tolerant timestep. 

 

 

S11. Fictive temperature of the melt-quenched LJ glass 

We estimate herein the fictive temperature Tf of the melt-quenched LJ glass. Figure S11 shows the evolution 

of potential energy as a function of temperature during melt quenching, where the fictive temperature is 

determined as Tf  ≈ 0.62. Note that, to obtain the potential energy at temperature lower than T = 0.5 (used 

in the main text), the system has been continued to cool down from T = 0.5 to T = 0.05 following the same 

cooling rate. 
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Fig. S11: Fictive temperature Tf of the melt-quenched LJ glass. Tf is determined as the 

inflection point of potential energy evolution with respect to temperature during melt 

quenching. 
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Supplementary Movies 

Movie S1: Predicted versus true atom dynamics in binary Lennard–Jones liquid. 

Movie S2: Predicted versus true atom dynamics in ionocovalent silica liquid. 

Movie S3: Predicted versus true atom dynamics in covalent silicon liquid. 

Movie S4: Predicted versus true atom dynamics in metallic Cu64.5Zr35.5 liquid. 
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