Supporting Information

Synchronously boosting microwave-absorbing and heatconducting capabilities in $CeO_2/Ce(OH)_3$ core-shell nanorods/nanofibers via Fe-doping amount control

Xinxin Wang,[†] Feifei You,[†] Qibin Yao,[†] Kairui Wang,[†] You Liao,[†] Guoxiu Tong,^{*} [†] Xiaojuan Wang,[†] Tong Wu,^{*} [‡] and Wenhua Wu[†]

[†]College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.

‡ Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, US

* Corresponding Authors: E-mail: tonggx@zjnu.cn (G.X. Tong); tongwu@andrew.cmu.edu (T. Wu). Tel.: +86-579-82282269; Fax: +86-579-82282269.

Characterization

The morphology, size, elemental content, and mapping of Fe-doped CeO₂/Ce(OH)₃ CSNRs/NFs were examined on a scanning electron microscope (SEM, ZEISS, GeminiSEM 300, 10 kV) linked to an energy-dispersive X-ray spectrometer (EDS, Horiba EX-250, 15 kV). The core-shell structure and crystallinity were analyzed by a transmission electron microscope (TEM, JEM-2100F, 200 kV). XRD patterns were captured using a D/MAX-IIIA X-ray diffractometer (XRD) for the phase analysis. Cu K α with λ = 0.15418 nm acts as the radiation source with a working voltage of 40.0 kV, a working current of 40.0 mA, and a scanning speed of 10°/min. A Fourier transform infrared spectrometer (FTIR, Nicolet 8700) was utilized to capture FTIR spectra to analyze the chemical structure of Fe-doped CeO₂/Ce(OH)₃ CSNRs/NFs. A Raman spectrometer (Renishaw, RM10000) was employed to obtain Raman spectra for the study of oxygen vacancy defects. The analysis of chemical states and oxygen vacancy defects was done on an ESCALAB250 X-ray photoelectron spectroscope (XPS). A WIC640 infrared thermal imager was used to capture infrared photos to investigate the process of heat transfer.

Measurements of magnetic properties, conductivity, and EM parameters

Measurements of static magnetic properties were performed using a vibrating specimen magnetometer (Model 7404, LakeShore, USA) at room temperature. The conductivity measurement was done by an RTS-9 model four-point probe. The measured disc pellets (diameter: 13.0 mm; thickness: 1.0 mm) were prepared by filling the powder specimens into a mold and then pressing them into disc pellets. The as-obtained powder specimens were mixed uniformly with molten paraffin at 45% loading and shaped into toroidal specimens (H=ca. 3.5 mm, ϕ_{out} =7.0 mm, and ϕ_{in} =3.04 mm) in a mold to determine the EMWACs. Permeability ($\mu_r = \mu' - j\mu''$) and permittivity ($\varepsilon_r = \varepsilon' - j\varepsilon''$) were measured by a Keysight N5230A vector network analyzer using the coaxial line method.

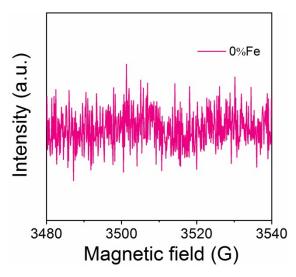
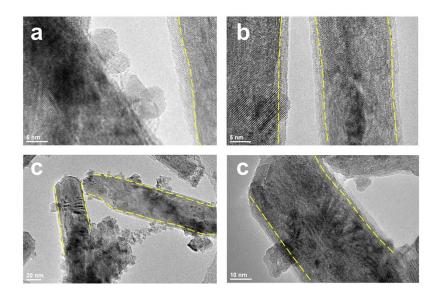



Fig. S1 EPR spectra of $Ce(OH)_3/CeO_2$ CSNFs/CSNRs.

Fig. S2 TEM images of the specimens produced at (a–b) 20% Fe doping amount and (c–d) 50% Fe doping amount.

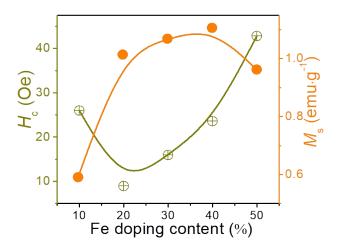
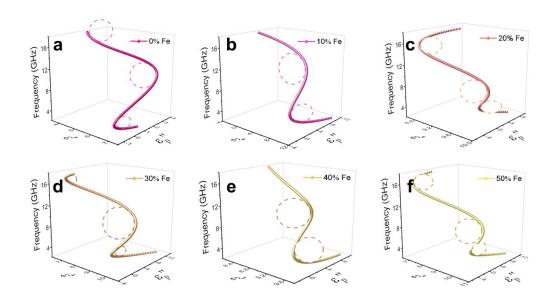
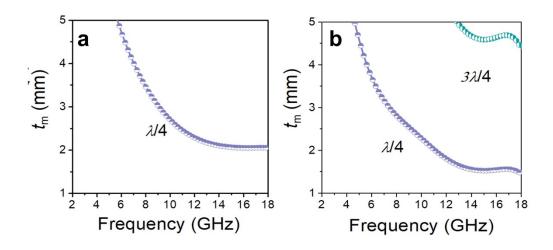


Fig. S3 $M_{\rm s}$ and $H_{\rm c}$ as a function of Fe-doping amount

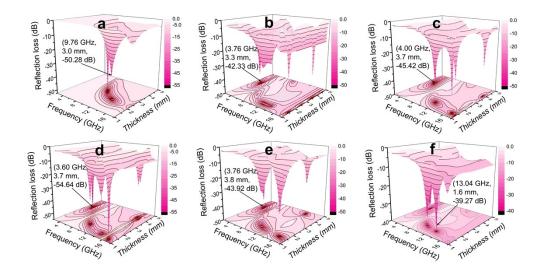

Fig. \$4 Cole—Cole curves of Fe- doped Ce(OH)₃/CeO₂ CSNR/Fs.

Table S1 Comprehensive comparison of the EMWAPs with reported absorbers. [14–28, 43–45]

Absorbers	Filling mass fraction (%)	Optimal $R_{\rm L}$ value (dB)	$f(GHz)$ (optimal R_L)	$d \text{ (mm)}$ $(R_{L} < -10 \text{dB})$	Bandwidth (GHz) $(R_L < -10 \text{ dB})$	EABW/d (GHz/mm)	Ref.
Ba _{0.8} Ce _{0.2} Fe ₁₂ O ₁₉	70	-20.4	16.10	6.50	1.00	0.15	20
Nanostructured 3D CeO ₂	>50	-19.3	15.80	2.00	< 0.50	0.25	16
Zn modified CeO ₂ microspheres	70	-35	14.00	2.00	Approx.0.5	0.25	18
BaCe _{0.05} Fe _{11.95} O ₁₉ ferrite	70	-37.4	12.80	6.50	3.00	0.46	21
CeO ₂ /MWCNT Co-doped	70	-34.64	16.25	5.00	2.88	0.58	23
CeO ₂ /rGO nanocomposites	60	-53.66	6.40	3.50	4.00	1.14	19
PANI/CeO ₂	50	-40	8.80	3.00	4.00	1.33	25
CNT/CeO _{2-x} yolk@shell hybrids	50	-52.4	6.15	4.00	5.50	1.38	24
MoS ₂ /CeO ₂ composites	50	-56.3	10.70	3.00	< 5.00	1.67	26
BaCe _{0.2} Fe _{11.8} O ₁₉ /C NTs nanocomposite	40	-49.61	9.00	2.50	4.20	1.68	22
CeOHCO ₃ (20% Fe)	50	-37.08	7.44 (4.9 mm)	3.40	7.04	1.90	17
CeO ₂ (300 °C)	45	-34.49	13.28	2.00	4.00	2.00	14
CeO ₂ -rGO	50	-45.9	13.28	2.00	4.50	2.00	43
CeOHCO ₃ (S4)	60	-42.71	9.12	2.90	6.40	2.21	44
yolk-shell CeO ₂ microspheres	33.3	-71.3	14.50	2.00	5.40	2.70	15
Co ₃ O ₄ /CeO ₂ /CNTs composites	33.3	-59.82	11.92	1.73	5.20	3.01	27
core–shell CeO ₂ @Fe	80	-23.88	9.60	1.10	4.24	3.85	28
CeO ₂ /Ce(OH) ₃ CSNFs	45	-50.28	9.76	2.40	5.12	2.13	
10%Fe-doped CeO ₂ /Ce(OH) ₃ CSNFs	45	-42.33	3.76	1.70	9.26	5.45	
20%Fe-doped CeO ₂ /Ce(OH) ₃ CSNFs	45	-45.42	4.00	1.70	6.64	3.91	This
30%Fe-doped CeO ₂ /Ce(OH) ₃ CSNFs	45	-54.64	3.60	1.50	6.64	4.43	work
40%Fe-doped CeO ₂ /Ce(OH) ₃ CSNRs	45	-43.92	3.76	1.60	7.12	4.45	
50%Fe-doped CeO ₂ /Ce(OH) ₃ CSNRs	45	-39.27	13.04	1.80	8.24	4.58	

Fig. S5 Matching thickness as a function of frequency for a) Ce(OH)₃/CeO₂ CSNFs/CSNRs and b) 10%Fe-doped Ce(OH)₃/CeO₂ CSNFs/CSNRs.

Fig. S6 Frequency characteristics: a)–f) 3D RL plots of the paraffin composites containing 45 wt.% specimens produced under various Fe doping amounts: (a) 0%, (b) 10%, (c) 20%, (d) 30%, (e) 40%, and (f) 50%.

 $\label{eq:conductance} \textbf{Table S2} \ \ \text{Heat conductance summarization of Fe-doped Ce(OH)}_3/\text{CeO}_2 \ \ \text{CSNR/Fs and other Ce-based fillers.} \\ ^{[50-63,29,2,45,30,31]}$

Filler	Loading (%)	Heat conductance (W/m·k)	Ref.
SiC-SiO ₂ -Al ₂ O ₃ -TiO ₂	80	0.122	50
Y _{2.8} Ce _{0.2} A ₁₅ O ₁₂	15	0.3796	51
$La_2(Zr_{0.7}Ce_{0.3})_2O_7$	/	0.541	52
Al_2O_3 (@AgNPs	70	0.67	53
Thiolene/TiO ₂	90	0.76	54
$Ti_3C_2T_x$	50	0.767	55
Pt@TiO ₂	100	0.998	56
CoSb ₃ +1% CeO ₂	/	1.00	29
Al_2O_3/TiO_2	100	1.25	57
Si ₃ N ₄ /PTFE	70	1.3	58
PI/Al ₂ O ₃ composite film	80	1.3	59
CoSb ₃ +5% CeO ₂	/	1.7	29
BN/MWCNT/PPS	51	1.74	60
g-C ₃ N ₄ @Fe@C hollow micro-polyhedra	20	1.75	2
BN-GO	50	2.11	61
TiO ₂ /Fe/C nanocomposites	45	2.188	45
CeO ₂ +18 vol.% SiC	/	~2.2	30
CeO ₂ -Gd ₂ O ₃	/	~2.2	31
Ti ₃ C ₂ T _x MXene microflakes	50	2.746	62
GO/AIN	56	2.770	63
CeO ₂ /Ce(OH) ₃ CSNFs	45	1.864	
10%Fe-doped CeO ₂ /Ce(OH) ₃ CSNFs	45	2.518	
20%Fe-doped CeO ₂ /Ce(OH) ₃ CSNFs	45	3.442	
30%Fe-doped CeO ₂ /Ce(OH) ₃ CSNFs	45	2.240	This work
40%Fe-doped CeO ₂ /Ce(OH) ₃ CSNRs	45	2.237	
50%Fe-doped CeO ₂ /Ce(OH) ₃ CSNRs	45	2.143	