Supporting Information for

Durable modulation of Zn (002) plane deposition via reproducible zincophilic carbon quantum dots towards low N/P ratio Zinc-Ion Batteries

Zhu Xu,^a Heng Li,^{a,b,*} Yupeng Liu,^a Kexuan Wang,^a Huibo Wang,^a Mingzheng Ge,^a Junpeng Xie,^a Jielei Li,^a Zhaorui Wen,^a Hui Pan,^a Songnan Qu,^a Jilei Liu,^d Yanyan Zhang,^c Yuxin Tang,^{c,*} and Shi Chen^{a,*}

^a Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China

^b State Key Laboratory of High-Performance Ceramics and Superfine Microstructure,
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
^c College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
^d College of Materials Science and Engineering, Hunan Joint International Laboratory of
Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for
Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082,
Hunan, P.R. China

* Corresponding authors.
E-mail: liheng@mail.sic.ac.cn;
E-mail: yxtang@fzu.edu.cn;
E-mail: shichen@um.edu.mo.

Supplementary Figures and Tables

Table S1 Comparison in depth of discharge (DOD) and cycling lifespan for Zn Zn symme	etric cells with different modified strategies.
---	---

Modified strategies	Zn foil thickness (µm)	Current density (mA cm ⁻²)	Areal capacity (mAh cm ⁻²)	DOD (%)	Lifespan (h)	Ref.
N,S-CDs additive	10	1.95	3.9	67	103	This work
	$10 \ \mu m$ on one	2	3	50	100	
CNF-SO ₃ Zn separator	on the other	1	5	80	60	Adv. Funct. Mater., 2022
$7_{\rm T}$ (DO) $/7_{\rm T}$ F with in site SEI	10	3	3	50	250	² European European Sect. 2021
$Zn_3(PO_4)_2/ZnF_2$ -rich in situ SEI	10	4.7	4.7	80	120	-Energy Environ. Sci., 2021
N,S-CDs additive	20	1.95	7.8	67	250	This work
	20	3.9	7.8	67	200	1 nis work
Zwitterionic hydrogel electrolyte	~20	20	10	80.9	100	³ Adv. Energy Mater., 2022
Polyamide coating	20	10	10	85	150	⁴ Energy Environ. Sci., 2019
MX-TMA coating	20	10	10	85	450	⁵ Energy Storage Mater., 2022
ZGL coating	20	1	5	42.7	560	6E
	20	1	10	85.5	250	*Energy Storage Mater., 2022
TiO ₂ & PVDF coating	25	8.85	8.85	60	250	⁷ Adv. Funct. Mater., 2021
Glass fiber gasket	~26	50	10	66.7	100	⁸ Angew. Chem., Int. Ed., 2022

CO ₂ -purged electrolyte	30	10	10	57	100	⁹ ACS Nano, 2022
NH ₂ -PSiO _x coating	30	20	10	57	~300	¹⁰ Energy Storage Mater., 2023
PSN coating	30	10	10	60	250	¹¹ Adv. Funct. Mater., 2021
2-propanol composite electrolyte	~50	15	15	51.2	500	¹² Adv. Mater., 2022
Cellulose film separator	~50	2	20	69.7	300	¹³ Energy Storage Mater., 2022
		25	17.67	65	200	
ZP coating	50	25	19.03	70	138	¹⁴ Angew. Chem., Int. Ed., 2023
		26.55	21.74	80	60	
Janus separator	~85	28.3	28.3	56	220	¹⁵ Adv. Mater., 2022
CuHCF coating	100	30	30	51.3	200	¹⁶ Small, 2022
Acetone additive	100	50	50	73.5	800	¹⁷ Adv. Funct. Mater., 2023
Montmorillonite coating	100	10	45	77	>1000	¹⁸ Adv. Energy Mater., 2021
ZnHAP/BC separator	100	1	29.1	50	1025	¹⁹ Cmc11 2022
	100	1	46.5	80	611	->sman, 2025
ZnP coating	100	20	30	51	300	204 dr. Eurot Motor 2021
	100	15	48	82	100	-Adv. Funct. Mater., 2021

Modified strategies	Zn foil	Zn foil Cathode		Full cell performance		Cathode area	N/D and a	Energy density (Wh kg ⁻¹)		
	Thickness (µm)	Material	Mass loading (mg cm ⁻²)	Specific capacity (mAh g ⁻¹)	Current density	(mAh cm ⁻²)	1N/F FAU0	Based on active material	Including electrolyte	Ket.
Nafion-Zn-X coating	300	VS ₂	3	~ 175	$0.5 \ { m A} \ { m g}^{-1}$	0.53	513.00	0.95	0.60	²¹ Angew. Chem., Int. Ed., 2020
Cellulose film separator	200	α-MnO ₂	2	~ 300	0.2 A g ⁻¹	0.60	189.92	5.80	0.15	¹³ Energy Storage Mater., 2022
F-GQDs additive	100	MnO ₂	1	~ 330	$0.2 \ A \ g^{-1}$	0.33	189.92	6.38	NA	²² Chem. Eng. J., 2023
$Zn_3(PO_4)_2/ZnF_2$ -rich in situ SEI	100	α-MnO ₂	1	~ 270	0.1 A g ⁻¹	0.27	189.92	5.22	2.36	² Energy Environ. Sci., 2021
In ³⁺ additive	100	V_2O_5	0.65	~ 540	$0.2 \ A \ g^{-1}$	0.35	152.81	3.90	NA	²³ Adv. Funct. Mater., 2022
TiO ₂ & PVDF coating	80	MnO ₂	1	244	2 C	0.24	151.94	5.88	1.94	⁷ Adv. Funct. Mater., 2021
Mxene in situ coating	50	α-MnO ₂	1	~ 300	$0.2 \ {\rm A} \ {\rm g}^{-1}$	0.30	94.96	11.44	NA	²⁴ Angew. Chem., Int. Ed., 2021
ZIF-8 in situ coating	50	LaVO ₄	1.9	~ 95	10 mA cm ⁻²	0.18	72.96	3.84	NA	²⁵ Adv. Sci., 2020
rGO in situ coating	110	V_3O_7 · H_2O	5.13	245	1.5 A g ⁻¹	1.26	47.09	6.95	NA	²⁶ ACS Appl. Mater. Interfaces, 2018
Liquefied Gas Electrolytes	100	$Na_2V_6O_{16} \cdot 1.63H_2O$	~ 3	~ 260	$0.02 \ A \ g^{-1}$	0.78	38.65	8.39	NA	²⁷ ACS Energy Lett., 2021
Gelatin coating	50	V ₆ O ₁₃	~ 2	~ 375	$0.1 \ {\rm A} \ {\rm g}^{-1}$	0.75	35.06	15.92	NA	²⁸ Adv. Energy Mater., 2021
Montmorillonite coating	100	MMT-MnO ₂	8.5	~ 270	2 C	2.30	22.34	40.21	NA	¹⁸ Adv. Energy Mater., 2021
1.4-dioxane additive	100	MnO ₂	9.4	~ 130	$0.05 \ { m A g^{-1}}$	1.22	20.20	21.17	NA	²⁹ ACS Appl. Mater. Interfaces, 2021

 Table S2 Electrochemical performance of the full cells with different modified strategies.

PVB coating	10	MnO ₂	1.13	~ 250	1 C	0.28	16.86	47.71	NA	³⁰ Adv. Funct. Mater., 2020
1.4-dioxane additive	20	$\mathrm{NH_4V_4O_{10}}$	13.3	~ 160	$2 \mathrm{A} \mathrm{g}^{-1}$	2.13	2.44	52.00	11.71	³¹ ACS Nano, 2023
N FCOF coating N N	NA	MnO ₂	16	NA	3 mA cm^{-2}	~ 2.00	2.00	130.00	55.00	
	NA	MnO ₂	8	~ 180	4 mA cm^{-2}	NA	5.00	113.00	NA	³² Nat. Commun., 2021
	NA	MnO ₂	8	~ 160	4 mA cm ⁻²	NA	10.00	74.00	NA	
GQDs additive	NA	NVO (PDF#49- 0996)	1.5	350	$0.1 \ { m A g^{-1}}$	0.53	NA	NA	NA	³³ Nano Energy, 2022
N,S-CDs additive	10	Na ₂ V ₆ O ₁₆ ·3H ₂ O	6.56	345	0.2 A g ⁻¹	2.27	1.83	132.34	9.26	This work
N,S-CDs additive (lean electrolyte)	10	Na ₂ V ₆ O ₁₆ ·3H ₂ O	11.52	294	0.2 A g ⁻¹	3.38	1.05	144.98	39.34	
	20	Na ₂ V ₆ O ₁₆ ·3H ₂ O	16.47	303	0.2 A g ⁻¹	4.99	1.46	129.75	26.34	1 nis work

Fig. S1 (a) Digital image of 2 M ZnSO₄ electrolyte solution containing various amounts (0, 0.05, 0.1, 0.2, 0.3, and 0.4 wt %) of N,S-CDs additives. (b) Photoluminescence spectra of N,S-CDs in aqueous solutions under 405 nm excitation. Inset: optical images of the N,S-CDs aqueous solution under nature light and excited by 405 nm.

Fig. S2 Long-term cycling performance of the Zn||Zn symmetric cells using electrolyte with (a) 0.05% N,S-CDs and (b) 0.2% N,S-CDs at 0.25 mA cm⁻² for 0.25 mAh cm⁻².

Fig. S3 Long-term cycling performance of the Zn $\|$ Zn symmetric cells using pristine ZnSO₄ electrolyte and electrolyte with 0.1% N,S-CDs at (a) 1 mA cm⁻² for 2 mAh cm⁻² and (b) 2.5 mA cm⁻² for 5 mAh cm⁻².

Fig. S4 Coulombic efficiency of Zn||Cu cells using electrolyte with 0.05% N,S-CDs and 0.2% N,S-CDs at 0.5 mA cm⁻² for 1 mAh cm⁻².

Fig. S5 In situ OM images of the anodes deposited at 5 mA cm⁻² for 60 minutes and then stripped at 1 mA cm⁻² for 60 minutes in the electrolyte (a) without and (b) with 0.1% N,S-CDs.

Fig. S6 Top-view SEM images of the anodes in the Zn||Zn symmetric cells using pristine ZnSO₄ electrolyte and electrolyte with 0.1% N,S-CDs at (a, b) 0.25 mA cm⁻² for 0.25 mAh cm⁻², (c, d) 1 mA cm⁻² for 2 mAh cm⁻² and (e, f) 2.5 mA cm⁻² for 5 mAh cm⁻² after 15 cycles.

Fig. S7 Top-view SEM images of the anodes in the Zn||Zn symmetric cells after rate test (**a**) without and (**b**) with 0.1% N,S-CDs.

Fig. S8 XRD patterns of the Zn deposits with deposition time from 0 to 180 minutes in the electrolyte with 0.1% N,S-CDs.

Fig. S9 XRD patterns of the Zn anode (with a lower initial $I_{(002)}/I_{(101)}$ ratio) using electrolyte with 0.1% N,S-CDs at various deposition time ranging from 0 to 120 min.

Fig. S10 Schematic illustration of the special-design cell configuration to obtain the in situ generated Zn deposit on a Cu mesh.

Fig. S11 XRD patterns of the cycled Zn anode using the electrolyte without and with 0.1% N,S-CDs.

Fig. S12 Cross-section SEM image of the anodes deposited at 1 mA cm⁻² for 1 mAh cm⁻² in the electrolyte with 0.1% N,S-CDs.

Fig. S13 XPS high-resolution spectra of S 2p of the anode surface after deposition (deposited at 1 mA cm⁻² for 60 minutes) and stripping (deposited at 1 mA cm⁻² for 60 minutes and then stripped at 1 mA cm⁻² for 60 minutes) in the electrolyte with 0.1% N,S-CDs.

Fig. S14 (a) Atomic model structure of binding energy between Zn²⁺ ions and Zn substrate.
(b-h) Atomic model structure of binding energy between Zn²⁺ ions and graphene quantum dots with different functional groups.

Fig. S15 (a) The XPS full spectra of the Undoped-CDs. The XPS high-resolution spectra of (b) C 1s, (c) O 1s, (d) N 1s, and (e) S 2p of the Undoped-CDs, respectively.

Fig. S16 (a) Long-term cycling performance of the Zn||Zn (thickness: 10 μm) symmetric cells using electrolyte with 0.1% Undoped-CDs at 1.95 mA cm⁻² for 3.9 mAh cm⁻². Long-term cycling performance of the Zn||Zn (thickness: 20 μm) symmetric cells using electrolyte with 0.1% Undoped-CDs at (b) 1.95 mA cm⁻² for 7.8 mAh cm⁻² and (c) 3.9 mA cm⁻² for 7.8 mAh

Fig. S17 Digital images and top-view OM images of the Zn foil surface after (a) the second plating and (b) the second stripping in the Zn||Zn (thickness: 10 μm) symmetric cells using electrolyte with 0.1% Undoped-CDs at 1.95 mA cm⁻² for 3.9 mAh cm⁻².

Fig. S18 Top-view SEM images of the cycled Zn anodes using electrolyte with Undoped-CDs.

Fig. S19 Top-view SEM image of the NVO nanobelts.

Fig. S20 XRD pattern of the synthesized NVO material.

Fig. S21 Digital image of the self-supporting cathode membrane.

Fig. S22 Cyclic voltammetry (CV) curves of Zn $\|NVO$ cells in a voltage range of 0.3 V to 1.5 V at 0.1 mV s⁻¹.

Fig. S23 Electrochemical impedance spectroscopy (EIS) plots of Zn||NVO cells (a) before and (b) after the CV test.

Fig. S24 Cycling performance of the Zn||NVO full cells with low N/P ratio of 1.83.

Reference

- 1 X. Ge, W. Zhang, F. Song, B. Xie, J. Li, J. Wang, X. Wang, J. Zhao and G. Cui, *Adv. Funct. Mater.*, 2022, **32**, 2200429.
- 2 Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui and J. Luo, *Energy Environ. Sci.*, 2021, 14, 3609-3620.
- 3 W. Zhang, F. Guo, H. Mi, Z.-S. Wu, C. Ji, C. Yang and J. Qiu, *Adv. Energy Mater.*, 2022, **12**, 2202219.
- 4 Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang and G. Cui, *Energy Environ*. *Sci.*, 2019, **12**, 1938-1949.
- X. Zhu, X. Li, M. L. K. Essandoh, J. Tan, Z. Cao, X. Zhang, P. Dong, P. M. Ajayan,
 M. Ye and J. Shen, *Energy Storage Mater.*, 2022, 50, 243-251.
- 6 H. Gan, J. Wu, R. Li, B. Huang and H. Liu, *Energy Storage Mater.*, 2022, 47, 602-610.
- 7 R. Zhao, Y. Yang, G. Liu, R. Zhu, J. Huang, Z. Chen, Z. Gao, X. Chen and L. Qie, *Adv. Funct. Mater.*, 2021, **31**, 2001867.
- 8 Z. Cai, J. Wang, Z. Lu, R. Zhan, Y. Ou, L. Wang, M. Dahbi, J. Alami, J. Lu, K. Amine and Y. Sun, *Angew. Chem., Int. Ed.*, 2022, **61**, e202116560.
- Y. Zhu, H. Y. Hoh, S. Qian, C. Sun, Z. Wu, Z. Huang, L. Wang, M. Batmunkh, C. Lai,
 S. Zhang and Y. L. Zhong, *ACS Nano*, 2022, 16, 14600-14610.
- 10 J. Dong, H. Peng, J. Wang, C. Wang, D. Wang, N. Wang, W. Fan, X. Jiang, J. Yang and Y. Qian, *Energy Storage Mater.*, 2023, 54, 875-884.
- S. Zhou, Y. Wang, H. Lu, Y. Zhang, C. Fu, I. Usman, Z. Liu, M. Feng, G. Fang, X. Cao, S. Liang and A. Pan, *Adv. Funct. Mater.*, 2021, 31, 2104361.
- 12 Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng, T. Or, L. Yang, Q. Li, Q. Cu, R. Feng, Z. Zhang, Y. Nie, B. Ren, D. Luo, X. Wang, A. Yu and Z. Chen, *Adv. Mater.*, 2022, 34, e2207344.
- W. Zhou, M. Chen, Q. Tian, J. Chen, X. Xu and C.-P. Wong, *Energy Storage Mater.*, 2022, 44, 57-65.
- 14 Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu, J. Han, B. Lu, S. Liang, G. Chen and J. Zhou, Angew. Chem., Int. Ed., 2023, 62, e202215324.
- 15 X. Zhang, J. Li, K. Qi, Y. Yang, D. Liu, T. Wang, S. Liang, B. Lu, Y. Zhu and J. Zhou, *Adv. Mater.*, 2022, **34**, 2205175.
- Y. Liu, Y. Li, X. Huang, H. Cao, Q. Zheng, Y. Huo, J. Zhao, D. Lin and B. Xu, *Small*, 2022, 18, e2203061.

- X. Shi, J. Wang, F. Yang, X. Liu, Y. Yu and X. Lu, Adv. Funct. Mater., 2023, 33, 2211917.
- 18 H. Yan, S. Li, Y. Nan, S. Yang and B. Li, *Adv. Energy Mater.*, 2021, **11**, 2100186.
- 19 H. Qin, W. Chen, W. Kuang, N. Hu, X. Zhang, H. Weng, H. Tang, D. Huang, J. Xu and H. He, *Small*, 2023, **19**, e2300130.
- 20 P. Cao, X. Zhou, A. Wei, Q. Meng, H. Ye, W. Liu, J. Tang and J. Yang, Adv. Funct. Mater., 2021, 31, 2100398.
- Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang, Y. Wang, R. Qin, S. Ding, Y. Song, J. Wu,
 K. Yang, Z. Wang, Z. Mei, Z. Song, H. Wu, Z. Jiang, G. Qian, L. Yang and F. Pan,
 Angew. Chem., Int. Ed., 2020, **59**, 16594-16601.
- W. Han, H. Lee, Y. Liu, Y. Kim, H. Chu, G. Liu and W. Yang, *Chem. Eng. J.*, 2023, 452, 139090.
- 23 K. Ouyang, D. Ma, N. Zhao, Y. Wang, M. Yang, H. Mi, L. Sun, C. He and P. Zhang, *Adv. Funct. Mater.*, 2022, **32**, 2109749.
- N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao and Z. Niu, *Angew. Chem., Int. Ed.*, 2021, 60, 2861-2865.
- 25 X. Liu, F. Yang, W. Xu, Y. Zeng, J. He and X. Lu, *Adv. Sci.*, 2020, 7, 2002173.
- 26 C. Shen, X. Li, N. Li, K. Xie, J.-G. Wang, X. Liu and B. Wei, ACS Appl. Mater. Interfaces, 2018, 10, 25446-25453.
- L. Ma, J. Z. Lee, T. P. Pollard, M. A. Schroeder, M. A. Limpert, B. Craven, S. Fess, C.
 S. Rustomji, C. Wang, O. Borodin and K. Xu, *ACS Energy Lett.*, 2021, 6, 4426-4430.
- J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim and J. W. Choi, *Adv. Energy Mater.*, 2021, 11, 2100676.
- 29 R. Feng, X. Chi, Q. Qiu, J. Wu, J. Huang, J. Liu and Y. Liu, ACS Appl. Mater. Interfaces, 2021, **13**, 40638-40647.
- 30 J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang and Z. Guo, *Adv. Funct. Mater.*, 2020, **30**, 2001263.
- 31 T. Wei, Y. Ren, Y. Wang, L. Mo, Z. Li, H. Zhang, L. Hu and G. Cao, *ACS Nano*, 2023, **17**, 3765-3775.
- Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu, B. Hu, W. Weng, Y. Yao, J. Zeng, Z.
 Chen, P. Liu, Y. Liu, G. Li, J. Guo, H. Lu and Z. Guo, *Nat. Commun.*, 2021, 12, 6606.
- H. Zhang, R. Guo, S. Li, C. Liu, H. Li, G. Zou, J. Hu, H. Hou and X. Ji, *Nano Energy*, 2022, 92, 106752.