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Materials

Zinc acetate dihydrate (Zn(CH3COO)2), 2-methylimidazolate and cetyltrimethyl ammonium 

bromide used for synthesizing the Zif-8 MOFs were purchased from Sigma Aldrich. For 

preparing the pristine PEI and their composites, 1-methyl-2-pyrrolidinone (NMP), 4,4’-

diaminodiphenyl ether (ODA) and 4,4’-isopropylidenediphenoxy) bis-(phthalic anhydride) 

(BPADA) were purchased from Sinopharm Chemical Reagent Co., Ltd. These materials were 

used without any further purification.

Preparation of MOFs and the PEI-based composites

The zeolitic imidazolate framework-8 (Zif-8, a typical MOF) were synthesized through using 

the typical solvothermal method 1. The multidentate bonded PEI/MOFs composite films were 

prepared by using in-situ polymerization process, as shown in Figure S1. Firstly, the weighted 

MOFs (0.2, 0.5, 1 and 3 wt%) were dispersed into 18 ml NMP with the assistance of 

ultrasonication in the three-necked flask, following 1.5g ODA were dissolved into the solution. 

Then added 4.0 g BPADA powder into the flask per hour 1.0 g to obtain the PEI precursor. The 

solution casting method is adopted to prepare the composite films after the bubble in the flask 

disappeared completely, the thickness is controlled at 10-12 µm. Subsequently, the sample was 

held in the vacuum oven at 80 °C overnight to evaporate the NMP solvent. Then rising the 

temperature of the vacuum oven by 60 °C per hour, the specific temperatures are 140, 200, 260 

and 320 °C. The PEI-based composites can be obtained after this gradient thermal imidization 

process.

During the preparation of ZIF-8 MOFs, due to the escape of guest molecules, the 

volatilization of organic solvents and the deletion of ligands, a large amount of Zn open metal 

sites (OMSs) would expose to the MOFs surface 2. In this work, the 4,4’-diaminodiphenyl ether 

(ODA) is used as the one of the monomers to synthesize PEI. The -NH2 group at the tail of 
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ODA could provide abundant H+, which could coordinatively bond with the Zn OMSs of 

MOFs. Our previous work has scientifically verified this result in the polyimide-based system 
3. Therefore, the specific structure which is similar to the covalent crosslinking network is 

named as “multisite bonding network”.

Characterization

The morphology of the MOFs and the cross-section image of the PEI/MOFs composites were 

observed by via using scanning electron microscope (SEM, shanghai). The X-ray diffraction 

(XRD) patterns of the MOFs and the PEI-based composites were recorded by a Smart Lab 9kW 

equipment. The chemical construction and elemental composition of both the MOFs and the 

PEI/MOFs composites were characterized by the Fourier transform infrared spectrometer (FT-

IR, Bruker Vector-22) and the X-ray photoelectron spectroscopy (XPS, Axis Supra), 

respectively. The DSC&TGA analysis of the Zif-8 MOFs were performed on a TA-Q600 

synchronous thermal analysis system. Dynamic mechanical analysis (DMA) of the PEI-based 

composites was operated on a DMA analyzer (NETZSCH DMA 242) in the stretch mode, the 

oscillation frequency is 1 Hz. Testing temperature ranged from room temperature to 300 °C at 

a heating rate of 3 °C min-1. Small angle X-ray scattering (SAXS) of the composites were 

carried out at the beam line 1W2A in Beijing Synchrotron Radiation Facility (BSRF). The 

storage ring was operated at 2.5 GeV with a current of ~80 mA. A charged coupled device type 

Mar165-CCD was used to collect 2D scattering patterns with the sample-to-detector distance 

in the direction of the beam is 1900 mm. The in-situ X-ray absorption fine structure (XAFS) 

spectra of Zn K-edge were measured at the XAFS station of beamline 1W1B of BSRF in 

transmission mode. The samples (3 cm × 2 cm) were soaked in NMP for 3 days to performe the 

solubility test. The treated samples were rinsed with deionized water and then immersed in hot 

methanol after they were dried entirely.
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Figure S1. Schematic illustration for the synthesis of the PEI/MOFs composites.
Performance Measurements of the PEI/MOFs composites

The dielectric constant (εr), dielectric loss (Tanδ) and electric modulus of the composites were 

tested through using a Concept 40 broadband dielectric spectrometer. For the frequency-

depended dielectric performance of the composites, the measurements were performed at room 

temperature with the frequency ranges from 101 to 107 Hz. For the temperature-depended 

measurements, the operating temperature is set to be 30-200 °C. Breakdown strength (Eb) and 

the electric polarization-electric field (P-E) loops of the PEI-based composites were carried out 

by using a Poly-k ferroelectric test system at 10 Hz at both room temperature and high 

temperature. The energy storage density (Ue) and related energy storage efficiency (η) of the 

composites were calculated according to the measured P-E loops. 10 mm and 3 mm golden 

electrodes were vacuum-evaporated onto both sides of the samples before the dielectric 

performance and Eb measurements, respectively. 3 mm, 5 mm and 7 mm electrodes were 

evaporated on the composites surface for the P-E loops measurements.

Supplemented results

The SEM image of the Zif-8 MOFs are shown in Figure S2(a), the enlarged SEM image in 

Figure S2(b) indicates the Zif-8 present typical truncated rhombic dodecahedral (TRD) 

structure. Meanwhile, the size of the Zif-8 concentrated on about 300-370 nm (Figure S2(c)), 

which is due to the less-reactive zinc acetate dihydrate is used as salts in synthesizing the Zif-

8, the results are in great coincidence with previous literature 1.
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Figure S2. (a) SEM and (b) high-resolution SEM image of the Zif-8 MOFs and (c) their size 
distribution.

The XRD pattern of the Zif-8 is shown in Figure S3(a), the diffraction peaks at 7.8 °, 10.8 °, 

13.1 °, 15.2 ° and 18.4 ° correspond to the (011), (002), (112), (022) and (222) planes of typical 

Zif-8 MOFs. The FT-IR spectrum of the synthesized MOFs at wavenumber of 993 cm-1, 1143 

cm-1, 1587 cm-1 and 2927 cm-1, 3136 cm-1 are in agreement of the C-N, C=N and C-H bonds of 

Zif-8, as shown in Figure S3(b). 

Figure S3. (a) XRD pattern and (b) FT-IR spectrum of the Zif-8 MOFs.
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The TG analysis of the prepared MOFs shows a gradual weight loss of 15.03% at about 35 

to 200 °C is due to the volatilization of guest molecules (e.g. H2O) and residual solvents in Zif-8 

MOFs. Following a plateau started at ~420 °C is consistent with the framework decomposition 

of Zif-8 MOFs2, as presented in Figure S4. Besides, an obvious endothermic peak of the 

prepared MOFs starts to appear at ~420 °C in its DSC curve, which suggested that the MOFs 

start to decompose and transform into ZnO at this stage4. It is mentionable that the highest 

temperature of thermal imidization process for the PEI/MOFs composites is 320 °C. The 

thermal imidization of the PEI-based composites does not cause the decomposition of MOFs. 

Moreover, the removement of guest molecules and residual solvents could endow the MOFs 

with high crystalline properties, which might enhance the comprehensive performances of the 

PEI/MOFs composites 3. 

Figure S4. TGA&DSC analysis of Zif-8 MOFs.
The XPS results of the synthesized MOFs clearly indicate the appearance of the C, N, O and 

Zn elements, as shown in Figure S5. All these results indicate the successfully synthesis of the 

Zif-8 MOFs.
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Figure S5. XPS spectra of the Zif8: (a) C 1s, (b) O 1s, (c) N 1s and (d) Zn 2p core-level spectra.

Figure S6. Macroscopic photo of the PEI/Zif-8 composites.
As shown in Figure S7, only few amounts of intact MOFs can be observed in the cross-

section image of the PEI/MOFs composite. Owing to the PEI chains interspersed in the pores 

of the MOFs would coordinatively bonded with the Zn OMS in MOFs, finally generate the 

multisite bonding networks within the composites. Most MOFs lose their original morphology 
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after this process, and exist in the composite as portions of the multisite bonding networks. 

Consequently, the MOFs are difficult to be observed while the Zn element nearly distribute in 

the whole material. This phenomenon indicates the successfully construction of the multisite 

bonding networks within the PEI-based composites.

Figure S7. Cross-section SEM image of the PEI-based composites containing 1 wt% MOFs 
and the related elemental mapping images of C, O, N and Zn elements.

Figure S8. Overall XPS spectra of the PEI and the PEI/MOFs composites and Zn 2p core-level 
spectra of the PEI/Zif-8 composites.

Figure S9. The original 2D SAXS images of PEI and the PEI/MOFs composites.
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Figure S10. The energy storage modulus (E’) of PEI and the PEI/MOFs composite.

Figure S11. Weibull breakdown strength (Eb) of PEI and the PEI/MOFs composites at room 
temperature.
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Figure S12. Frequency dependence of (a) dielectric constant (εr) and (b) dielectric loss (Tanδ) 
of PEI and the PEI/MOFs composites.

Figure S13. Temperature dependence of dielectric constant (εr) and dielectric loss tangent 
(Tanδ) of the PEI.
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Figure S14. P-E loops of the PEI and PEI/MOFs composites at different MOFs loading. 
The energy storage density (Ue) and charge-discharge efficiency (η) of the PEI-based the 

composites were calculated through the P-E loops according to Eq. S1 and S2.
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where εr is the dielectric constant of the material, E is the applied electric field, D is the electric 

displacement, P is the polarization, ε0=8.85×10-12 F m-1 is the dielectric constant of vacuum. 

Dmax and Dr are the maximum and remnant electric displacement corresponding to the 

maximum and remnant polarization (Pmax and Pr).
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Figure S15. P-E loops of the PEI/MOFs composites at 150 °C.

Figure S16. Normalized Zn K-edge XANES spectra of the PEI/MOFs composites from RT to 
150 °C.
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Figure S17. Normalized Zn K-edge XANES spectra of Zn foil.
The model of single PEI polymer chain was constructed by dehydration polymerization of 

BPADA and ODP. According to the characterization results and our previous work3, the 

multidentate bonded model of single PEI/Zif-8 chain was established after optimization, as 

shown in Figure S18. To build the model the pristine PEI and the PEI/Zif-8 composite, 20 

copies of the single model of PEI and PEI/Zif-8 chain were made, respectively. Then these 

polymer chains were randomly placed in the space frame in a gaseous manner. The pressure 

and temperature were set to be 0.4 GPa and 273 K, and pressing the gas cube. After one dynamic 

calculation, the pressure was released to be 0 MPa, the stable solid models of the pristine PEI 

and PEI/Zif-8 composites can be obtained. 

The molecular dynamics calculations of these solid models were performed at different 

temperatures, the intermolecular binding energy between PEI and PEI/Zif-8 chains can be 

attained. The force field is COMPASS II. In order to obtain a stable density structure, NPT is 

selected in the ensemble, the step size is set to 1 fs, and the total simulation time is 50.0 ps for 

every temperature or every pressure.

The electrostatic potential around the PEI/Zif-8 multidentate bonded chain was calculated 

via using the semiempirical quantum chemistry method. The red or bule region denotes the 

negative or positive electrostatic potential area, respectively.



13

Figure S18. The established molecule models of the PEI chain, unit of MOFs and the multisite 
bonded chain in PEI/MOFs composite.

Figure S19. Molecular dynamics model of the pristine PEI at room temperature and high 
temperature.

 
Figure S20. (a) K-edge FT-EXAFS in R space, (b) wavelet transform analysis for the 
PEI/MOFs composite before and after the heat treatment.
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Figure S21. P-E loops of the PEI/MOFs composite before and after the heat treatment.
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