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Fig. S1. Fabrication and performance characterization of SWCNT electrode. (A) 

Fabrication processes of SWCNT electrodes. (B) Sheet conductivity as a function of the volume 

of the SWCNT dispersion used.

Fig. S2. Experimental setup for strain measurement.

Fig. S3. Experimental setup for and blocked force measurement.
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Note S1. Analytical model for KDOM 

Fig. S4. Geometry of a Kresling origami unit at initial state. (A) 3D view. (B) Top view.

A single Kresling structure is analyzed, the relationship between reaction force and height of 

the Kresling is determined based on the energy method and then the model is extended to 

multiple Kresling structures, such as KDOM. 

S1.1 Geometry

The Kresling structures (Fig. S4) are generated by folding flat sheet patterns with parameters 

of =4.90 mm, =9.74 mm, =53.78° (Fig. 3a). The edges number of top and bottom polygons 𝐿𝑝 𝐿𝑣 𝜃 

of Kresling is  And in the initial free state, the length of mountain creases , polygon 𝑝 = 6. 𝐿𝑚

radius , initial height and initial twist angle , can be obtained from the relation: [1]𝑅0 ℎ0 𝛾0

𝐿𝑝 = 2𝑅0sin (𝜋
𝑝)
𝐿𝑚 = ℎ2

0 + 4𝑅2
0sin2 (𝛾0

2 ) = 𝐿2
𝑝 + 𝐿2

𝑣 ‒ 2𝐿𝑝𝐿𝑣cos 𝜃 

𝐿𝑣 = ℎ2
0 + 4𝑅2

0sin2 (𝛾0

2
+

𝜋
𝑝)

#(1)

To express the state of Kresling during compression, a coordinate system is established with 

 as the origin and  as the base vectors. Assuming that during the compression the 𝐴0 𝑒1, 𝑒2, 𝑒3

bottom surface is fixed and the polygon radius does not change, the state of Kresling 𝑅 = 𝑅0 

structure is determined by the twist angle  and the height .𝛾 ℎ
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The positions of  and  can be represented by𝐴𝑖 𝐵𝑖

𝑟𝐴𝑖
= 𝑅0cos (2𝜋

𝑝
𝑖 ‒

2𝜋
𝑝 )𝑒1 + 𝑅0sin (2𝜋

𝑝
𝑖 ‒

2𝜋
𝑝 )𝑒2     𝑖 = 1~𝑝#(2)

𝑟𝐵𝑖
= 𝑅0cos (2𝜋

𝑝
𝑖 ‒

2𝜋
𝑝

+ 𝛾)𝑒1 + 𝑅0sin (2𝜋
𝑝

𝑖 ‒
2𝜋
𝑝

+ 𝛾)𝑒2 + ℎ𝑒3    𝑖 = 1~𝑝.#(3)

The vectors of mountain creases  and valley creases , can be written as
𝑟𝐵1𝐴1

𝑟𝐵2𝐴1

𝑟𝐵1𝐴1
= 𝑟𝐴1

‒ 𝑟𝐵1
#(4)

𝑟𝐵2𝐴1
= 𝑟𝐴1

‒ 𝑟𝐵2
.#(5)

And the length of mountain creases and valley creases at arbitrary state can be written as

𝑙𝑚 = |𝑟𝐵2𝐴1
|#(6)

𝑙𝑣 = |𝑟𝐵2𝐴1
|#(7)

is the normal vector of plane , plane , plane  respectively, and can 𝑛1, 𝑛2,  𝑛3 𝐴1𝐵2𝐴2 𝐴2𝐵2𝐵3 𝐴2𝐴3𝐵3

be written as

𝑛1 = 𝑟𝐵2𝐴1
× 𝑟𝐵2𝐴2

#(8)

𝑛2 = 𝑟𝐴2𝐵2
× 𝑟𝐴2𝐵3

#(9)

𝑛3 = 𝑟𝐵3𝐴2
× 𝑟𝐵3𝐴3

.#(10)

Dihedral angles at the mountain crease , valley crease  and bottom and top crease  of 𝜃𝑚 𝜃𝑣 𝜃𝑝

Kresling origami can be expressed as

𝜃𝑚 = ∠(𝑛1,𝑛2)#(11)

𝜃𝑣 = ∠(𝑛2,𝑛3)#(12)

𝜃𝑝 = ∠(𝑛1,𝑒3)#(13)

S1.2 Mechanical model

The elastic potential energy of the Kresling origami structure consists of two parts: one is the 

elastic potential energy stored by the panel bending. The second is the elastic potential energy 
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stored by the elastic hinges at the creases, including side valley creases, top and bottom 

creases.[2]

In order to simplify the calculation of panel deformation, we use the truss model to capture the 

energy of panel bending. The spring stiffnesses at the mountain folds and valley folds are 

respectively  and . The values of them are determined by fitting the experimental results. 𝐾𝑚 𝐾𝑣

The elastic potential energy stored in the panel deformation can be written as

𝐸𝑏 =
𝑝
2

𝐾𝑚(𝑙𝑚 ‒ 𝑙𝑚0)2 +
𝑝
2

𝐾𝑣(𝑙𝑣 ‒ 𝑙𝑣0)2#(14)

where  and  are the length of mountain and valley creases in the initial free state 𝑙𝑚0 𝑙𝑣0

respectively. The creases are modeled as rotational springs. The spring stiffness  is𝐾𝑐

𝐾𝑐 =
𝐸𝐼𝑐

ℎ𝑐
#(15)

where  is length of the flexural pivot, and is the area moment of the cross section of ℎ𝑐
𝐼𝑐 =

𝑘𝑙𝑏3

12
 

the crease to the midline, where  is the crease ratio,  is the length of the creases,  is the 𝑘 𝑙 𝑏

thickness of the film,  is the Young's modulus of the material. At different creases,  is also 𝐸 𝐾𝑐

different due to the difference of  and . The spring stiffness of the valley creases is , 𝑙 𝑘
𝐾𝑐𝑣 =

𝐸𝐼𝑣

𝑏

and the spring stiffness of the bottom and top creases is . The elastic potential energy 
𝐾𝑐𝑝 =

𝐸𝐼𝑝

𝑏

stored in the creases can be written as

𝐸𝑐 =
1
2

𝑝𝐾𝑐𝑣(𝜃𝑣 ‒ 𝜃𝑣0)2 +
1
2

× 2𝑝𝐾𝑐𝑝(𝜃𝑝 ‒ 𝜃𝑝0)2#(16)

where  and  are the dihedral angles of valley creases and top and bottom crease in the 𝜃𝑣0 𝜃𝑝0

initial free state, respectively.

The total elastic potential energy of KDOM with  Kresling is 𝑛 = 2

𝐺𝐾 = 𝑛(𝐸𝑏 + 𝐸𝑐)#(17)
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 depends on the height  and the rotation angle , where , and  is the amount 𝐺𝐾 ℎ 𝛾 ℎ = ℎ0 ‒ Δ𝐿/𝑛 Δ𝐿

of compression. Since the KDOM the rotation is free, the rotation angle  can be obtained as 𝛾

following when the compression amount  is given:Δ𝐿

�∂𝐺𝐾

∂𝛾 |Δ𝐿 = 0，�∂2𝐺𝐾

∂𝛾2 |Δ𝐿 > 0#(18)

The total reaction force  and contribution of panel bending  and creases  are: 𝐹 𝐹𝑏 𝐹𝑐

�𝐹 =
∂𝐺𝐾

∂Δ𝐿|Δ𝐿,𝛾

𝐹𝑏 = �∂𝐸𝑏

∂Δ𝐿|Δ𝐿,𝛾

𝐹𝑐 = �∂𝐸𝑐

∂Δ𝐿|Δ𝐿,𝛾#(19)

Note S2. Analytical model for OHAM

Fig. S5. Four configurations of the OHAM.

The OHAM consists of an external DEA and an internal KDOM. KDOM contains  𝑛 = 2

Kresling origamis. The OHAM has four key configurations (Fig. S5). In the initial 

configuration, both Kreslings and DEA are in the free state. The height of KDOM is , and 𝑛ℎ0

the initial height of DEA is . In the reference configuration, the KDOM is compressed by  𝐿0 Δ𝐿

to , with the same height of the DEA. Thus, we obtain the relation that . In the 𝐿0 𝑛ℎ𝑅 = 𝐿𝑅 = 𝐿0

intermediate configuration, the DEA and KDOM are connected together to get OHAM, and 

then the OHAM is released and reached an equilibrium state. The KDOM and DEA maintain 
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the same height, that is . Finally, in the current configuration OHAM is activated by 𝑛ℎ𝐼 = 𝐿𝐼

external stimuli and undergoes deformation.

Here, it is assumed that the steady state of OHAM in the current configuration does not change 

regardless of whether the voltage is applied in the reference configuration or in the intermediate 

configuration. Then it can be considered that the voltage has been applied in the reference 

configuration, so that only the relationship between reference configuration and the relationship 

should be considered. The intermediate configuration is the special state of the actual 

configuration when the voltage is 0.

The free energy of the OHAM is composed of the elastic potential energy of the DEA, the 

energy stored in the electric field and the energy stored in the KDOM. Next, we will discuss 

them separately.

S2.1 Elastic potential energy of the DEA

Fig. S6. Schematic figure for the reference and current configurations of a rolled DEA.

As shown in Fig. S6, subjected the reaction force of KDOM and direct-current voltage, the 

rolled DEA undergoes extensions and inflation deformation and transformed from the reference 

configuration  to the current configuration . Ignoring the non-uniform deformation  (𝑅, Θ, 𝑍) (𝑟,𝜃, 𝑧)

caused by the top and bottom caps, and no torsion occurs, assuming that the DEA remains 

cylindrical, and the extension and inflation are uniform, the deformation law can be written as
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𝑟 = 𝑟(𝑅)
𝜃 = Θ

𝑧 = 𝑧(𝑍) = 𝜆𝑧𝑍#(20)

where  is the longitudinal stretch.
𝜆𝑧 =

𝐿𝐶

𝐿𝑅

The deformation gradient reads

𝐹 = [
𝑑𝑟
𝑑𝑅

0 0

0
𝑟∂𝜃
𝑅∂Θ

0

0 0
𝑑𝑧
𝑑𝑍

] = [𝑑𝑟
𝑑𝑅

0 0

0
𝑟
𝑅

0

0 0 𝜆𝑧
]#(21)

The left Cauchy-Green deformation tensor can be express by

𝐵 = 𝐹𝐹𝑇 = [(𝑑𝑟
𝑑𝑅)2 0 0

0 (𝑟
𝑅)2 0

0 0 (𝜆𝑧)2
]#(22)

Its three invariants , ,  are 𝐼1 𝐼2 𝐼3

𝐼1 =  (𝑑𝑟
𝑑𝑅)2 +

𝑟2

𝑅2
+ 𝜆2

𝑧

𝐼2 =
(𝜆2

𝑧𝑅2 + 𝑟2)(𝑑𝑟
𝑑𝑅)2 + 𝑟2𝜆2

𝑧

𝑅2

𝐼3 = (𝑟
𝑅

𝑑𝑟
𝑅 )2𝜆2

𝑧#(23)

By the incompressibility condition, the following relation is satisfied:

𝐼3 = (𝑟
𝑅

𝑑𝑟
𝑅 )2𝜆2

𝑧 = 1#(24)

Thus:

𝑟
𝑅

𝑑𝑟
𝑅

=
1
𝜆𝑧

#(25)

Suppose the inner wall of the rolled DEA is deformed from  to , and the outer wall is 𝑅1 𝑟1

deformed from  to , and we have𝑅2 𝑟2

𝑟2 =
1
𝜆𝑧

(𝑅2 ‒ 𝑅2
1) + 𝑟2

1 =
1
𝜆𝑧

(𝑅2 ‒ 𝑅2
2) + 𝑟2

2#(26)
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The energy per unit volume of the elastomer is determined using the incompressible Gent 

model: [3]

𝑤𝑆 =‒
𝜇𝐽𝑚

2
ln (1 ‒

𝐼1 ‒ 3

𝐽𝑚
)#(27)

where  is the shear modulus of the elastomer, and  describes the strain stiffening limit. 𝜇 𝐽𝑚

Both  and  are fitted from uniaxial tensile experimental result (Fig. S7).𝜇 𝐽𝑚

Fig. S7. Uniaxial tensile test curves of DEA with electrodes and DEA without electrodes, and 

the result of Gent model.

In the current configuration, the total elastic energy in volume  can be expressed as𝑉

𝐺𝑆 = ∫
𝑉

𝑤𝑠(𝑟)𝑑𝑉 = 2𝜋𝐿𝐶

𝑟2

∫
𝑟1

𝑟𝑤𝑆(𝑟)𝑑𝑟#(28)

For the M-layer elastomer,  represents the inner diameter of the mth layer, and  represents 𝑟𝑚 𝑟𝑚 + 1

the outer diameter of the mth layer. The total energy of the elastomer is

𝐺𝑆 = ∫
𝑉

𝑤𝑠(𝑟)𝑑𝑉 = 2𝜋𝐿𝐶

𝑟𝑚 + 1

∫
𝑟1

𝑟𝑤𝑠(𝑟)𝑑𝑟#(29)

S2.2 Energy stored in the electric field
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In the current configuration, the voltage  is applied, and the electric displacement  isΦ 𝐷𝐶

𝐷𝑐 = [ Φ𝜀

𝑟𝑙𝑛(𝑟2

𝑟1
)

0
0

]#(30)

in which  is the dielectric constant of the material.𝜀

The stored electrostatic energy in the elastomer dielectric per unit volume is

𝑤𝐸 =‒
|𝐷𝑐|2

2𝜀
#(31)

The total energy of electrostatic potential energy can be written as

𝐺𝐸 = ∫
𝑉

𝑤𝐸(𝑟)𝑑𝑉 = 2𝜋𝑧

𝑟2

∫
𝑟1

𝑟𝑤𝐸(𝑟)𝑑𝑟 = ‒
𝜋𝜀𝐿𝑐Φ2

ln (𝑟2

𝑟1
)

#(32)

For a structure composed of M layers of elastomers, the total electrical energy can be expressed 

as

𝐺𝑒 =
𝑀

∑
𝑚 = 1

‒
𝜋𝜀𝐿𝑐Φ2

㏑(𝑟𝑚 + 1

𝑟𝑚
)
#(33)

S2.3 Energy stored in the KDOM

For the convenience of calculation, the force-displacement curve of KDOM is fitted as a 

polynomial function, . The height of KDOM is  in the reference configuration and 𝐹 = 𝐹(ℎ) 𝐿𝑅

 in the current configuration, and the potential energy change of KDOM is𝐿𝐶

𝐺𝐾 =‒

𝐿𝐶

∫
𝐿𝑅

𝐹(ℎ)𝑑ℎ#(34)

S2.4 Determination of OHAM’s State

The total Helmholtz free energy of OHAM can be written as

𝐺 = 𝐺𝑆 + 𝐺𝐸 + 𝐺𝐾.#(35)
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 depends on three variables, namely the voltage , the longitudinal stretch  and the inner 𝐺 Φ 𝜆𝑧

diameter . Define the dimensionless quantity hoop stretch as . And for rolled DEA, we 𝑟1
𝜆𝑅 =

𝑟1

𝑅1

suppose  1. When the voltage  is given (  for the intermediate configuration), the 𝜆𝑅 = Φ Φ = 0

equilibrium is where the actuation results in minimum total energy:

� ∂𝐺
∂𝜆𝑧

|ℎ = � ∂𝑈
∂𝜆𝑅

|ℎ = 0,  � ∂2𝐺

∂𝜆𝑧
2|ℎ > 0,  � ∂2𝐺

∂𝜆𝑅
2|ℎ > 0.#(36)

And for rolled DEA, we suppose  1. We get the equilibrium using:𝜆𝑅 =

� ∂𝐺
∂𝜆𝑧

|ℎ = 0,  � ∂2𝐺

∂𝜆𝑧
2|ℎ > 0#(36)

Fig. S8 Stroke of OHAM-QZ5 during cycling test at 1200 V and 125 Hz which is the resonance 

frequency of a new specimen. 
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