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S.1 Band model of electric and thermoelectric transport

In the framework of a multiband, spin-dependent approach, total conductivity and Seebeck 

coefficient are calculated as:
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where n is a band index running over up-spin and down-spin manifolds, and j the cartesian 

index; the spin-dependent Seebeck coefficients are defined as: 
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Spin-dependent conductivities can be calculated according to the Bloch-Boltzmann Theory in 

relaxation time approximation:
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where V is the sample volume, f the Fermi occupancy, nk and vnk,j band energies and 

velocities, respectively, g the density of states, nk the electronic relaxation time; for the latter, 

we assume an energy-dependent formulation derived by numerical models which has been 

largely tested in previous works, and includes electron scattering with impurities, acoustic 

phonons, and polar optical phonons. Also, we assume the spin-flip scattering discardable over 

our length scale of interest. The numerical integration of Eq. S.4 and S.5 based on ab-initio 

band energies is extremely demanding for large size systems, thus we adopt a parabolic band 

approximation for the conduction states which is totally adequate for our charge carriers of 

interest. We model the conduction band dispersion as:
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where effective masses and band bottom energies are extracted from the calculated band 

structure for the Ti t2g bands. Coherently with these results, Eq. S.6 assumes only the band 

bottom energies as spin-dependent, not the effective masses. Using Eq. S.6, we can rewrite 

S.4 and S.5 in terms of carrier energy:
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where  = 1/ kBT; the corresponding band occupancy is:
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where V is the supercell volume.

S.2 Phonon-drag theory

The phonon-drag general theory has been developed in the past a long series of articles.1-6 

Here we adapt the formulation to an effective mass modeling built out on the basis the ab-

initio calculated band structure for the Ti 3d t2g conduction states hosting the 2DEG. For 

phonons we consider a longitudinal acoustic phonon branch in linear approximation. The 

electron-phonon interaction is treated according to the deformation potential approach 

described by Cantrell and Butcher.3,4 Only intra-band electron-phonon scattering is considered. 

In the following we give a brief outline of main formulas; the detailed formulation is 

described in the supporting information of Refs.7,8. From the coupled Boltzmann equation for 

electrons and phonons, the phonon-drag in the j direction is:
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where q and q are phonon wavevector and frequency, respectively;  and are  , , 'n k k q  epR q

electron-acoustic phonon scattering rates: 
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where fnk and Nq are Fermi-Dirac and Phonon equilibrium distributions, respectively, A(q) is 

the electron-acoustic phonon coupling amplitude, , and the two delta functions ' /q qN dN dq

impose energy and momentum conservation for the absorption process (the associated 

emission is implicitly included in the velocity factor);   is the total phonon scattering  phR q

rate (including phonon-phonon, phonon-boundary, and phonon-impurity scattering); the 

velocity factor is:
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 where vq,j is the phonon velocity. Eq. S.11 states that phonon-drag essentially depends on the 

ratio between the electron-phonon scattering and the total phonon scattering, so that it is only 

relevant where electron-phonon coupling dominates over other phonon scattering processes. 

ratio at the denominator. We approximate the velocities as:
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where vs is the sound velocity; we use momentum conservation and assume nk , ' ,k k k k q  

=nk’ ; also, we express band energies in parabolic band approximation (Equation S.6), 

changing integration variables from k to energy; after rather lengthy manipulations we obtain:
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The electron-phonon coupling cross section based on the deformation potential approach for a 

2DEG is :
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where D is the deformation potential,  the mass density, (z) the wavefunction of the 2D 

localized electrons, t the 2DEG thickness. When t is much smaller than the acoustic phonon 

wavelength in the z directions ( )  Proceeding in similar way we obtain:2 / zt q ( ) 1.n zF q :
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Finally, the phonon scattering rate is expressed according to the modeling of Callaway9
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where A describes scattering by point impurities, B the phonon-phonon scattering including 

both normal (crystal momentum-conserving) and umpklapp scattering, and  the Lv /s

boundary scattering (L is a characteristic sample length). Here we have used the same values 

A = 0.5 × 10−41, B = 0.5 × 10−20 K−3, and L = 0.1 mm used in Ref. 8 for the STO/LAO 

interface.

S.3 Model parameters

We use effective mass values of 0.52 me and 5.43 me for the longitudinal and transversal 

direction of the t2g states. For electronic and static dielectric constants and  we use IR  0

measured values10 of 5.88 and 160, respectively. The LO phonon energies extrapolated from 

plasma frequency measurements are = 19 meV, = 60 meV, = 92 meV. The ,1LO ,2LO ,3LO



 

deformation potential calculated from our band structure is D = 3.74 eV, and for the sound 

velocity we use the STO value vs = 1.5105 cm/s.

S.4 Results for 2-ETO layer heterostructure

Figure S.1 : ab-initio electronic properties for the STO/ETO/LAO heterostructure with 2 ETO layers at the 
interface. (a): scheme of the simulation cell structure; atom colors are La (gray), Eu (green), Sr (black), O 
(orange), Ti (magenta). (b) Orbital-resolved DOS; each panel reports orbitals belonging to the corresponding 
atomic layer; positive and negative values are for up-spin and down-spin states. Orbital contributions are drawn 
with different colors specified in the legend; the Fermi energy is fixed to zero, indicated by the vertical dotted 
line (c) DOS enlargement around the conduction band minimum. (d) band energies for up-spin (black) and 
down-spin (red dashed) channels

As reported in experiments,11 the 2DEG is only observed for one or two ETO layers at most, 

while for 3 or more layers the interface is insulating. This sharp threshold is not motivated by 

intrinsic properties: considering the virtually identical lattice constant and the very similar 

dielectric screening of bulk STO and ETO, it is easy to expect that Sr-Eu substitutions do not 

generate appreciable changes in the charge confinement mechanism. As evidence of this, in 

Fig. S.1 we display orbital-resolved DOS and band energies for the STO/ETO/LAO 

heterostructure with 2 ETO layers (2-ETO) at the interface. We can see in Figure S.1b and 

S.1c that for 2-ETO the 2DEG is still mostly localized within the 3d t2g orbitals of the two Ti 



 

atoms closer to the interface, with a large predominance of the dxy states. As expected, a 

significant difference between 1-ETO and 2-ETO is reflected in the magnetization which is 

much more robust for the latter: large spin splittings of ~ 270 meV and ~ 160 meV now occur 

for first and second dxy bands from the interface; furthermore, the Eu 4f magnetic moments 

are so large to induce a visible magnetization even on the O 2p bands of the LAO overlayer.

Figure S.2 Thermoelectric properties for the 2-ETO heterostructure. (a) Seebeck coefficient vs temperature, for 
several carrier densities, indicated in the legend. (b) Spin-polarization fraction vs temperature. (c) spin-voltage to 
thermal gradient ratio.

In Figure S.2 we report results for Seebeck coefficient (Figure S.2a), spin-polarization 

fraction (Figure S.2b), and spin voltage to thermal gradient ratio (Figure S.2a) for 2-ETO. 

Overall, the scenario is very similar to what described for 1-ETO, but some quantitative 

difference appears: 2-ETO shows slightly larger Seebeck amplitudes and visibly reinforced 

spin-polarization: for n = 1013  cm-2 the spin-polarization saturates to the full value in both 

materials, while for n = 1014  cm-2  is ~50% for 2-ETO and only about 40% in 1-ETO; this is 

reflected in the spin voltage, which is similar at n = 1013  cm-2, but about an order of 



 

magnitude larger for 2-ETO at n = 1014  cm-2. However, for the charge density range where 

thermal-spin conversion is most effective (n ~ 1013  cm-2 or smaller) we should expect 1-ETO 

and 2-ETO to deliver similar performances.
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