Modulating piezoelectricity and mechanical strength via three-dimensional gradient structure for piezoelectric composites

Tao Yang¹, Weili Deng ^{1, *}, Guo Tian¹, Lin Deng¹, Wanghong Zeng¹, You Wu¹, Shenglong Wang¹, Jieling Zhang¹, Boling Lan¹, Yue Sun¹, Long Jin¹, Weiqing Yang ^{1,2} *

Dr. T. Yang, Dr. G. Tian, L. Deng, W. Zeng, Y. Wu, S. Wang, J. Zhang B. Lan, Y. Sun, L. Jin,

¹ Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China

Prof. W. Deng

¹ Key Laboratory of Advanced Technologies of Materials (Ministry of Education),
 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu
 610031, P. R. China

E-mail: weili1812@swjtu.edu.cn

Prof. W. Yang

¹ Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China

² Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu
610031, P. R. China

E-mail: wqyang@swjtu.edu.cn

Figure S1. Polarization-electric (P-E) curves of R-PMN-PT (a), G_{030} -PMN-PT (b) and G_{303} -PMN-

PT (c) under different electric fields.

Figure S2. Dielectric constant, dielectric loss (a) and impedance (b) of the gradient structure film with frequencies from 10^{0} to 10^{7} Hz. (c) Tan (delta) and phase image of the gradient films under AC triangular waves at 1 kHz.

Figure S3. Structure and photograph of the prepared flexible pressure sensor. a) Structure of the flexible device. b) Photograph of the fabricated flexible device.

Figure S4. Output voltage (a-c) and charge (d-f) of the gradient structure films under different pressures at the same frequency.

Figure S5. Simulation results of output voltage for R-PMN-PT (a), G_{030} -PMN-PT (b) and G_{303} -PMN-PT (c) under the same pressure.

Figure S6. a) Schematic diagram of the fabrication process of PMN-PT nanoparticles. b-c) SEM images of the PMN-PT nanoparticles. Scale bars are 3 μ m and 1 μ m. d) XRD pattern of PMN-PT ceramic with perovskite phase.

Materials	Tensile modulus (MPa)	Tensile strength (MPa)	Piezoelectric coefficient (pm/V)	References
BT-PVDF composites	368	12	9.4	1
CNT@3-3-3 composites	28	×	120	2
Piezoelectric metamaterials	340	7	150	3
Piezoceramic textile	350	5	190	4
Piezoelectric gel	13.5	12	62	5
Heterostructure glycine-PVA film	4000	10	5.3	6
Gradient structure	830	55	15.5	This work

 Table 1. Comparison of the mechanical strength and piezoelectricity with different tough piezoelectric materials.

References:

- 1. T. Kowalchik, F. Khan, K. Le, P. Leland, S. Roundy and R. Warren, *Nano Energy*, 2023, **109**, 108276.
- F. Yang, J. Li, Y. Long, Z. Zhang, L. Wang, J. Sui, Y. Dong, Y. Wang, R. Taylor, D. Ni, W. Cai,
 P. Wang, T. Hacker and X. Wang, *Science*, 2021, 373, 337-342.
- T. Tang, Z. Shen, J. Wang, S. Xu, J. Jiang, J. Chang, M. Guo, Y. Fan, Y. Xiao, Z. Dong, H. Huang, X. Li, Y. Zhang, D. Wang, L-Q. Chen, K. Wang, S. Zhang, C-W. Nan and Y. Shen, Natl. Sci. Rev., 2023, nwas177.
- Y. Hong, B. Wang, Z. Long, Z. Zhang, Q. Pan, S. Liu, X. Luo and Z. Yang, *Adv. Funct. Mater.*, 2021, **31**, 2104737.
- 5. Q. Li, L. Chen, M. Guo and Z. Hu, Adv. Mater. Technol., 2022, 7, 2101371.
- 6. J. Li, F. Yang, Y. Long, Y. Dong, Y. Wang and X. Wang, ACS Nano, 2021, 15, 14903-14914.