Supporting Information

Geometry Engineering of Multiple Resonance Core via Phenyl-Embedded Strategy toward Highly Efficient Narrowband Blue OLEDs

Yimin Wu, ${ }^{a}$ Xiaoyu Liu, ${ }^{a}$ Junjie Liu, ${ }^{a}$ Ge Yang, ${ }^{a}$ Songyan Han, ${ }^{a}$ Dezhi Yang, ${ }^{b}$ Xiaosong Cao, ${ }^{c}$ Dongge Ma, ${ }^{b}$ Zhengyang Bin*a and Jingsong You*a
${ }^{a}$ Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China.
${ }^{b}$ Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.
${ }^{c}$ Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.
*Correspondence to: binzhengyang@scu.edu.cn; jsyou@scu.edu.cn

Table of Contents

I. General Remarks S3
II. OLED Fabrication and Characterization S4
III. Synthesis and Characterization S4
IV. Method of Theoretical Calculations S12
V. Crystal Data. S13
VI. Additional Spectra and Data S19
VII. References S25
VIII. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra. S27
IX. Copies of HPLC Spectra S36

I. General Remarks

NMR spectra were recorded on an Agilent 400-MR DD2 spectrometer. The ${ }^{1} \mathrm{H}$ NMR (400 MHz) chemical shifts were measured relative to CDCl_{3} or DMSO- d_{6} as the internal reference (DMSO- $d_{6}: \delta=2.50 \mathrm{ppm} ; \mathrm{CDCl}_{3}: \delta=7.26 \mathrm{ppm}$). The ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ chemical shifts were given using CDCl_{3} or DMSO- d_{6} as the internal standard (DMSO- $d_{6}: \delta=39.52 \mathrm{ppm} ; \mathrm{CDCl}_{3}: \delta=77.16 \mathrm{ppm}$). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-IT-TOF (ESI). X-Ray single-crystal diffraction data were collected on a Bruker D8 VENTURE single crystal diffractometer. Absorbtion spectra were measured on a HITACHI U-2910. Fluorescence spectra and photoluminescence quantum yield were collected on a Horiba Jobin Yvon-Edison Fluoromax-3 fluorescence spectrometer with a calibrated integrating sphere system with the excitation wavelength of 365 nm . Phosphorescence spectra were collected on a HITACHI F-7100 fluorescence spectrophotometer and a Horiba Jobin Yvon-Edison Fluoromax-3 fluorescence spectrometer with the excitation wavelength of 365 nm . Transient photoluminescence decay spectra were obtained with Horiba Single Photon Counting Controller: FluoroHub and Horiba TBX Picosecond Photon Detection with the excitation wavelength of 365 nm . Thermogravimetric analysis (TGA) was carried out using DTG-60(H) at a rate of 10 ${ }^{\circ} \mathrm{C} / \mathrm{min}$ under nitrogen atmosphere. Cyclic voltammogram (CV) were performed on LK2005A with a solution of tetrabutylammonium hexafluorophosphate ($\mathrm{Bu}_{4} \mathrm{NPF}_{6}, 0.1$ $\mathrm{M})$ in dichloromethane (DCM) as electrolyte and ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$as standard. Three-electrode system $\left(\mathrm{Ag} / \mathrm{Ag}^{+}\right.$, platinum wire and glassy carbon electrode as reference, counter and work electrode respectively) was used in the CV measurement. HPLC analysis was conducted on a Shimadzu Prominence Modular HPLC system. HPLC traces were performed using a Daicel analytical column in hexane and isopropyl alcohol.

All commercially available reagents and chemicals were used as received without further purification. Unless otherwise noted, all reactions were carried out using Schlenk techniques under a nitrogen atmosphere. The solvents were dried and purified using an Innovative Technology PS-MD-5 Solvent Purification System. pe-QAO, ${ }^{1}$ $\mathbf{Q A O}^{2}$ and $9 H$-tribenzo $[b, d, f]$ azepine $(\mathbf{T B A})^{3}$ were prepared according to the literature procedures.

II. OLED Fabrication and Characterization

Indium-tin-oxide (ITO) coated glass with a sheet resistance of $15 \Omega \mathrm{sq}^{-1}$ was used as the anode substrate. Ahead of film deposition, ITO substrates were cleaned with alkaline detergent, boiled deionized water, deionized water in ultrasonic bath, dried in an oven, and finally treated with oxygen plasma for 10 min to enhance the surface work function of ITO anode. All organic layers were deposited with the rate of 0.1 $\mathrm{nm} \cdot \mathrm{s}^{-1}$ under high vacuum. The doped and co-doped layers were prepared by co-evaporating dopant and host material from two individual sources, and the doping concentrations were modulated by controlling the evaporation rates of dopant.

Current density-voltage-luminance ($J-V-L$) characteristics were measured by using KEYSIGHT B1500A. The luminance and electroluminescence spectra were collected with model DLM-100Z photometer and OPT2000 spectrophotometer, respectively.

III. Synthesis and Characterization

2) Synthesis of $h p$-BQAO and $h p-M B Q A O$

Scheme S1. Synthesis of [5]he-BQAO, [6]he-BQAO and $\boldsymbol{h p}$-BQAO.

Synthesis of methyl 1-(phenylamino)-2-naphthoate (3)

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with $\mathbf{1}$ ($1.0 \mathrm{mmol}, 1.0$ equiv), 2 (1.2 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2.0 equiv), and toluene (2.0 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N_{2} atmosphere, and then heated at $140{ }^{\circ} \mathrm{C}$ in a pre-heated oil bath for 24 h . The reaction mixture was then cooled to room temperature, diluted with 10.0 mL of DCM, filtered through a celite pad, and washed with $25.0-35.0 \mathrm{~mL}$ of DCM. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified via silica gel column chromatography (petroleum ether/DCM $=4 / 1, \mathrm{v} / \mathrm{v}$) to afford the desired product $\mathbf{3}$ as a white solid ($279.1 \mathrm{mg}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.93(\mathrm{~s}, 3 \mathrm{H})$, $6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.33(\mathrm{~m}$, $1 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.42(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.3,115.3,118.7$, 121.4, 122.2, 125.4 126.2, 127.36, 127.43, 128.3, 128.4, 129.1, 136.8, 145.2, 146.0, 169.1 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$300.0995, found 300.0991 .

Synthesis of methyl 1-((2-(methoxycarbonyl)phenyl)-(phenyl)amino)-2 -naphthoate (5)

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with 3 ($1.0 \mathrm{mmol}, 1.0$ equiv), 4 (2.0 equiv), $\mathrm{Cu}\left(50 \mathrm{~mol} \%\right.$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.5 equiv), and 1,2-dichlorobenzene (o-DCB) (2.0 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N_{2} atmosphere, and then heated at $180^{\circ} \mathrm{C}$ in a pre-heated oil bath for 36 h . The reaction mixture was then cooled to room temperature, diluted with 10.0 mL of DCM , filtered through a celite pad, and washed with $25.0-35.0 \mathrm{~mL}$ of DCM. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified via silica gel column chromatography (petroleum ether/DCM $=1 / 4, \mathrm{v} / \mathrm{v}$) to afford the desired product 5 as a white solid ($377.6 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.29(\mathrm{~s}, 3 \mathrm{H})$, $3.48(\mathrm{~s}, 3 \mathrm{H}), 6.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$
51.7, 52.2, 119.8, 122.1, 122.2, 122.3, 124.2, 125.2, 126.1, 126.4, 127.2, 127.6, 128.0, $128.2,128.5,129.26,129.28,130.9,132.1,132.5,136.6,143.3,145.8,149.2,168.2$, 168.7 ppm. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 434.1363$, found 434.1365.

Synthesis of dimethyl 1,1'-(phenylazanediyl)bis(2-naphthoate) (6)

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with $\mathbf{3}$ ($1.0 \mathrm{mmol}, 1.0$ equiv), $\mathbf{1}$ (2.0 equiv), $\mathrm{Cu}\left(50 \mathrm{~mol} \%\right.$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.5 equiv), and $o-\mathrm{DCB}$ $(2.0 \mathrm{~mL})$. The reaction mixture was allowed to stir for 5 min at room temperature under an N_{2} atmosphere, and then heated at $180^{\circ} \mathrm{C}$ in a pre-heated oil bath for 36 h . The reaction mixture was then cooled to room temperature, diluted with 10.0 mL of DCM, filtered through a celite pad, and washed with $25.0-35.0 \mathrm{~mL}$ of DCM. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified via silica gel column chromatography (petroleum ether/DCM = $1 / 6, \mathrm{v} / \mathrm{v}$) to afford the desired product $\mathbf{6}$ as a white solid ($280.7 \mathrm{mg}, 58 \%$ yield). NMR spectra were difficult to interpret precisely due to large peak broadening, however, further conformation of structure can be made by HRMS and X-ray crystallography. The single crystal of $\mathbf{6}$ for X-ray crystallography was obtained by slow diffusion of hexane into a concentrated solution of $\mathbf{6}$ in DCM at room temperature. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.02(\mathrm{bs}, 6 \mathrm{H}), 6.90-6.95(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.49 (bs, 2H), 7.69 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.78 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.02$ (bs, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=51.9,122.2,125.8,126.0,127.1,128.2,129.1$, 130.1, 136.3, 169.0 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 484.1519$, found 484.1516.

Synthesis of [5]he-BQAO

A round bottom flask with a magnetic stirring bar was charged with $5(1.0 \mathrm{mmol}$, 1.0 equiv), NaOH (20.0 equiv) and $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=1 / 1(10.0 \mathrm{~mL})$. The reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ in a pre-heated oil bath for 24 h . The reaction mixture was then cooled to room temperature, and volatile was evaporated under reduced pressure. The remaining solid was dissolved in 20.0 mL of $\mathrm{H}_{2} \mathrm{O}$, and acidified with $1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$. The resulting mixture was extracted with ethyl acetate $(3 \times 10.0 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated under reduced pressure. Then the residue was dissolved in 10.0 mL of DCM and 5 drops of N, N-dimethylformamide (DMF) was added. The
reaction mixture was stirred for 5 min at room temperature, and oxalyl chloride (10.0 equiv) was added in drops. After being stirred for 1 h , the reaction mixture was added with AlCl_{3} (20.0 equiv) and refluxed for 24 h . Then the reaction mixture was cooled to room temperature and $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was added in drops. Subsquentlly, the resulting mixture was extracted with $\mathrm{DCM}(3 \times 10.0 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated under reduced pressure and the residue was purified via silica gel column chromatography (petroleum ether/DCM/ethyl acetate $=6 / 2 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford the desired product [5]he-BQAO as a yellow solid ($299.7 \mathrm{mg}, 81 \%$ yield). The single crystal of [5]he-BQAO for X-ray crystallography was obtained by temperature gradient vacuum sublimation process. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.05(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.40-8.45$ $(\mathrm{m}, 2 \mathrm{H}), 8.68-8.73(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=121.6,122.2$, 124.0, 124.1, 124.4, 124.9, 125.1, 125.70, 125.76, 125.81, 127.0, 127.2, 127.6, 128.8, 129.1, 132.2, 132.4, 132.6, 136.5, 137.9, 140.7, 142.3, 178.8, 179.7 ppm. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{24} \mathrm{H}_{13} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 370.0838$, found 370.0834.

Synthesis of [6]he-BQAO

A round bottom flask with a magnetic stirring bar was charged with $\mathbf{6}(1.0 \mathrm{mmol}$, 1.0 equiv), NaOH (20.0 equiv), and $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=1 / 1(10.0 \mathrm{~mL})$. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ in a pre-heated oil bath for 24 h . The reaction mixture was then cooled to room temperature, and volatile was evaporated under reduced pressure. The remaining solid was dissolved in 20.0 mL of $\mathrm{H}_{2} \mathrm{O}$, and acidified with 1 M HCl (aq). The resulting mixture was extracted with ethyl acetate $(3 \times 10.0 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated under reduced pressure. Then the residue was dissolved in 10.0 mL of DCM and 5 drops of DMF was added. The reaction mixture was stirred for 5 min at room temperature, and oxalyl chloride (10.0 equiv) was added in drops. After being stirred for 1 h , the reaction mixture was added with AlCl_{3} (20.0 equiv) and refluxed for 24 h . Then the reaction mixture was cooled to room temperature and $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was added in drops. Subsquentlly, the resulting mixture was extracted with DCM $(3 \times 10.0 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated under reduced pressure and the
residue was purified via silica gel column chromatography (petroleum ether/DCM/ethyl acetate $=7 / 2 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford the desired product [6]he-BQAO as a yellow solid ($222.3 \mathrm{mg}, 53 \%$ yield). The single crystal of [6]he-BQAO for X-ray crystallography was obtained by temperature gradient vacuum sublimation process. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=122.1,124.3,124.5,124.8,125.1,125.8,125.9,126.7,128.4$, 128.7, 132.0, 136.1, 140.9, 141.4, 179.5 ppm . HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{NNaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 420.0995$, found 420.0991 .

Synthesis of $9 H$-tribenzo $[b, d, f]$ azepine (9) ${ }^{3}$

A flame-dried round bottom flask with a magnetic stirring bar was charged with 7 ($10.0 \mathrm{mmol}, 1.0$ equiv), 8 (1.5 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5.0 \mathrm{~mol} \%$), PPh_{3} ($10 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2.0 equiv), and DMF (30.0 mL). The reaction mixture was allowed to stir for 5 min at room temperature under an N_{2} atmosphere, and then heated at $120{ }^{\circ} \mathrm{C}$ in a pre-heated oil bath for 18 h . The reaction mixture was then cooled to room temperature, diluted with 10.0 mL of DCM , filtered through a celite pad, and washed with 40.0-60.0 mL of DCM. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified via silica gel column chromatography (petroleum ether/ethyl acetate $=9 / 1, \mathrm{v} / \mathrm{v}$) to afford the desired product $\mathbf{9}$ as a white solid ($2.23 \mathrm{~g}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.21$ (bs, 1H), 6.91 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.43-7.50 (m, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=119.9,124.3,127.9,128.6$, 130.2, 130.3, 132.8, 139.5, 151.1 ppm . HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 266.0940, found 266.0938 .

Synthesis of dimethyl 2-(9H-tribenzo[b,d,f]azepin-9-yl)isophthalate (11)

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with $\mathbf{1 0}$ ($1.0 \mathrm{mmol}, 1.0$ equiv), 9 (2.0 equiv), $\mathrm{Cu}\left(50 \mathrm{~mol} \%\right.$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.5 equiv), and $o-\mathrm{DCB}$ $(2.0 \mathrm{~mL})$. The reaction mixture was allowed to stir for 5 min at room temperature under an N_{2} atmosphere, and then heated at $180^{\circ} \mathrm{C}$ in a pre-heated oil bath for 36 h . The reaction mixture was then cooled to room temperature, diluted with 10.0 mL of DCM, filtered through a celite pad, and washed with $25.0-35.0 \mathrm{~mL}$ of DCM. The combined organic extracts were concentrated under reduced pressure and the resulting
residue was purified via silica gel column chromatography (petroleum ether/ethyl acetate $=6 / 1, \mathrm{v} / \mathrm{v}$) to afford the desired product $\mathbf{1 1}$ as a white solid ($320.4 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=3.10(\mathrm{~s}, 6 \mathrm{H}), 6.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.39 (m, 8H), 7.55-7.58 (m, 4H), 7.74-7.76 (m, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta=51.3,116.7,119.7,123.6,126.9,128.0,128.4,129.0,130.4,132.8$, 137.2, 137.7, 144.1, 147.6, 167.8 ppm . HRMS (ESI^{+}): calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NNaO}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+} 458.1363$, found 458.1366 .

Synthesis of $\boldsymbol{h p}$-BQAO

A round bottom flask with a magnetic stirring bar was charged with $\mathbf{1 1}(1.0 \mathrm{mmol}$, 1.0 equiv), NaOH (20.0 equiv), and $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=1 / 1(10.0 \mathrm{~mL})$. The reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ in a pre-heated oil bath for 24 h . The reaction mixture was then cooled to room temperature, and volatile was evaporated under reduced pressure. The remaining solid was dissolved in 20.0 mL of $\mathrm{H}_{2} \mathrm{O}$, and acidified with $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$. The resulting mixture was extracted with ethyl acetate $(3 \times 10.0 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated under reduced pressure. Then the residue was dissolved in 10.0 mL of DCM and 5 drops of DMF was added. The reaction mixture was stirred for 5 min at room temperature, and oxalyl chloride (10.0 equiv) was added in drops. After being stirred for 1 h , the reaction mixture was added with AlCl_{3} (20.0 equiv) and refluxed for 24 h . Then the reaction mixture was cooled to room temperature and $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was added in drops. Subsquentlly, the resulting mixture was extracted with DCM $(3 \times 10.0 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated under reduced pressure and the residue was purified via silica gel column chromatography (petroleum ether/DCM/ethyl acetate $=1 / 9 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford the desired product $\boldsymbol{h} \boldsymbol{p}$-BQAO as a red solid ($346.1 \mathrm{mg}, 88 \%$ yield). The single crystal of $\boldsymbol{h} \boldsymbol{p}$-BQAO for X-ray crystallography was obtained by temperature gradient vacuum sublimation process. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.96-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.48(\mathrm{dd}, J=$ $8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 8.88 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $123.2,124.6,125.5,126.8,127.5,129.4,131.2,132.3,134.1,136.4,138.5,146.4$, 175.6 ppm . HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{26} \mathrm{H}_{13} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$394.0838, found 394.0841 .

Scheme S2. Synthesis of pe-QAO and QAO. ${ }^{1,2}$
Synthesis of dimethyl 2-(9H-carbazol-9-yl)isophthalate (13)
A flame-dried Schlenk test tube with a magnetic stirring bar was charged with $\mathbf{1 0}$ ($1.0 \mathrm{mmol}, 1.0$ equiv), $\mathbf{1 2}$ (2.0 equiv), $\mathrm{Cu}\left(50 \mathrm{~mol} \%\right.$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.5 equiv), and $o-\mathrm{DCB}$ $(2.0 \mathrm{~mL})$. The reaction mixture was allowed to stir for 5 min at room temperature under an N_{2} atmosphere, and then heated at $180^{\circ} \mathrm{C}$ in a pre-heated oil bath for 36 h . The reaction mixture was then cooled to room temperature, filtered through a short column of silica gel, and washed with DCM. The combined organic extracts were concentrated under reduced pressure to provide $\mathbf{1 3}$ and used in next step without further purification.

Synthesis of pe-QAO

A round bottom flask with a magnetic stirring bar was charged with $\mathbf{1 3}$ (1.0 mmol , 1.0 equiv), NaOH (20.0 equiv), and $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=1 / 1(10.0 \mathrm{~mL})$. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ in a pre-heated oil bath for 24 h . The reaction mixture was then cooled to room temperature, and volatile was evaporated under reduced pressure. The remaining solid was dissolved in 20.0 mL of $\mathrm{H}_{2} \mathrm{O}$, and acidified with 1 M HCl (aq). The resulting mixture was extracted with ethyl acetate $(3 \times 10.0 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated under reduced pressure. Then the residue was dissolved in 10.0 mL of DCM and 5 drops of DMF was added. The reaction mixture was stirred for 5 min at room temperature, and oxalyl chloride (10.0 equiv) was added in drops. After being stirred for 1 h , the reaction mixture was added with AlCl_{3} (20.0 equiv) and refluxed for 24 h . Then the reaction mixture was cooled to room temperature and $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was added in drops. Subsquentlly, the resulting mixture was extracted with DCM $(3 \times 10.0 \mathrm{~mL})$. The combined organic layers were dried over anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated under reduced pressure and the residue was purified via silica gel column chromatography (petroleum ether/DCM/ethyl acetate $=6 / 3 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford the desired product pe-QAO as a yellow solid ($200.3 \mathrm{mg}, 63 \%$ yield). The single crystal of pe-QAO for X-ray crystallography was obtained by temperature gradient vacuum sublimation process. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69-7.73(\mathrm{~m}, 3 \mathrm{H}), 8.39-8.42(\mathrm{~m}, 4 \mathrm{H}), 8.76(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=120.6,124.4,124.5,125.0,125.3$, 125.6, 128.3, 133.6, 134.5, 136.7, 178.7 ppm. HRMS (ESI^{+}): calcd for $\mathrm{C}_{20} \mathrm{H}_{9} \mathrm{NNaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 318.0525$, found 318.0529 .

Synthesis of dimethyl 2,2'-(phenylazanediyl)dibenzoate (14)

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with 2 ($1.0 \mathrm{mmol}, 1.0$ equiv), 4 (4.0 equiv), $\mathrm{Cu}\left(50 \mathrm{~mol} \%\right.$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (5.0 equiv), and $o-\mathrm{DCB}$ $(3.0 \mathrm{~mL})$. The reaction mixture was allowed to stir for 5 min at room temperature under an N_{2} atmosphere, and then heated at $180^{\circ} \mathrm{C}$ in a pre-heated oil bath for 36 h . The reaction mixture was then cooled to room temperature, filtered through a short column of silica gel, and washed with DCM. The combined organic extracts were concentrated under reduced pressure to provide $\mathbf{1 4}$ and used in next step without further purification.

Synthesis of QAO

A round bottom flask with a magnetic stirring bar was charged with $\mathbf{1 4}(1.0 \mathrm{mmol}$, 1.0 equiv), NaOH (20.0 equiv), and $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=1 / 1(10.0 \mathrm{~mL})$. The reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ in a pre-heated oil bath for 24 h . The reaction mixture was then cooled to room temperature, and volatile was evaporated under reduced pressure. The remaining solid was dissolved in 20.0 mL of $\mathrm{H}_{2} \mathrm{O}$, and acidified with 1 M HCl (aq). The resulting mixture was extracted with ethyl acetate $(3 \times 10.0 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated under reduced pressure. Then the residue was dissolved in 10.0 mL of DCM and 5 drops of DMF was added. The reaction mixture was allowed to stir for 5 min at room temperature, and then oxalyl chloride (10.0 equiv) was added in drops. The reaction mixture was stirred for 5 min at room temperature, and oxalyl chloride (10.0 equiv) was added in drops. After being stirred for 1 h , the reaction mixture was added with AlCl_{3} (20.0 equiv) and refluxed for 24 h . Then the resulting mixture was extracted with DCM $(3 \times 10.0 \mathrm{~mL})$. The combined organic layers were
dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated under reduced pressure and the residue was purified via silica gel column chromatography (petroleum ether/DCM/ethyl acetate $=4 / 2 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford the desired product QAO as a yellow solid ($236.8 \mathrm{mg}, 74 \%$ yield). The single crystal of QAO for X-ray crystallography was obtained by temperature gradient vacuum sublimation process. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.46(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.71(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=120.4,123.5,123.7,125.3,126.5$, 127.9, 132.8, 133.0, 139.3, 139.8, 178.7 ppm . HRMS (ESI^{+}): calcd for $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{NNaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 320.0682$, found 320.0686 .

IV. Method of Theoretical Calculations

All theoretical calculations were performed using Gaussian 09 serials software. The HOMO/LUMO distributions were calculated on the basis of crystal structures at the B3LYP/ 6-31g(d) level and visualized using Gaussview 5.0 software.

The singlet radiative decay rate $\left(k_{\mathrm{R}}^{\mathrm{S}}\right)$, the intersystem crossing rate $\left(k_{\mathrm{ISC}}\right)$, the reverse intersystem crossing rate ($k_{\text {RISC }}$) and the triplet non-radiative decay rate ($k_{\mathrm{NR}}^{\mathrm{T}}$) could be estimated using the following equations. ${ }^{3,4}$

$$
\begin{gathered}
\Phi_{\mathrm{P}}=\mathrm{C}_{1} \Phi_{\mathrm{PL}} \\
\Phi_{\mathrm{d}}=\mathrm{C}_{2} \Phi_{\mathrm{PL}} \\
k_{\mathrm{R}}^{\mathrm{S}}=\Phi_{\mathrm{P}} / \tau_{\mathrm{p}}=\Phi_{\mathrm{PL}} \mathrm{C}_{1} \tau_{\mathrm{p}} \\
k_{\mathrm{ISC}}=\left(1-\Phi_{\mathrm{P}}\right) / \tau_{\mathrm{p}}=\left(1-\Phi_{\mathrm{PL}} \mathrm{C}_{1}\right) / \tau_{\mathrm{p}} \\
k_{\mathrm{RISC}}=\Phi_{\mathrm{d}} /\left(k_{\mathrm{ISC}} \tau_{\mathrm{p}} \tau_{\mathrm{d}} \Phi_{\mathrm{p}}\right)=\mathrm{C}_{2} /\left[\mathrm{C}_{1} \tau_{\mathrm{d}}\left(1-\Phi_{\mathrm{PL}}\right)\right] \\
k_{\mathrm{NR}}^{\mathrm{T}}=1 / \tau_{\mathrm{d}}-\Phi_{\mathrm{P}} k_{\mathrm{RISC}}=\left(1-\Phi_{\mathrm{PL}}\right) /\left[\tau_{\mathrm{d}}\left(1-\Phi_{\mathrm{PL}} \mathrm{C}_{1}\right)\right]
\end{gathered}
$$

Where Φ_{p} and Φ_{d} represent prompt and delayed fluorescence components and can be distinguished from the total Φ_{PL} by comparing the integrated intensities of prompt $\left(\mathrm{C}_{1}\right)$ and delayed components $\left(\mathrm{C}_{2}\right)$ in the transient PL spectra.

V. Crystal data

Table S1. Crystal Data for 6 [CCDC 2249621]

Identification code	$\mathbf{6}$
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NO}_{4}$
Formula weight	461.49
Temperature/K	197.0
Crystal system	monoclinic
Space group	$\mathrm{C} 2 / \mathrm{c}$
	$\mathrm{a}=14.7721(8) \AA, \alpha=90$ deg.
Unit cell dimensions	$\mathrm{b}=14.0494(8) \AA, \beta=120.406(3) \mathrm{deg}$.
	$\mathrm{c}=12.9393(7) \AA, \gamma=90$ deg.
Volume	$2316.1(2) \AA^{3}$
Z	4
$\rho_{\text {calcmg }} / \mathrm{mm}^{3}$	1.324
μ / mm^{-1}	0.088
$\mathrm{~F}(000)$	968.0
Crystal size/mm ${ }^{3}$	$0.41 \times 0.3 \times 0.21$
Radiation	$\mathrm{Mo} \mathrm{K} \alpha(\lambda=0.71073)$
2Θ range for data collection	4.316 to 55.042°
Index ranges	$-19 \leq \mathrm{h} \leq 19,-18 \leq \mathrm{k} \leq 18,-16 \leq 1 \leq 16$
Reflections collected	27302
Independent reflections	$2655\left[\mathrm{R}_{\text {int }}=0.0638, \mathrm{R}_{\text {sigma }}=0.0329\right]$
Data/restraints/parameters	$2655 / 0 / 161$
Goodness-of-fit on F^{2}	1.048
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0392, \mathrm{wR} \mathrm{R}_{2}=0.0939$
Final R indexes [all data	$\mathrm{R}_{1}=0.0586, \mathrm{wR} \mathrm{R}_{2}=0.1024$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$0.17 /-0.19$

Table S2. Crystal Data for pe-QAO [CCDC 2249111]

Table S3. Crystal Data for QAO [CCDC 2248788]

Identification code	QAO
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{NO}_{2}$
Formula weight	297.30
Temperature/K	292.26(10)
Crystal system	monoclinic
Space group	C2/c
	$\mathrm{a}=9.1959(6) \AA, \alpha=90 \mathrm{deg}$.
Unit cell dimensions	$\begin{aligned} & \mathrm{b}=13.4702(10) \AA, \beta=91.216(5) \mathrm{deg} . \\ & c=10.7519(6) \AA, \gamma=90 \mathrm{deg} . \end{aligned}$
Volume	1331.54(15) \AA^{3}
Z	4
pcalcmg/mm ${ }^{3}$	1.483
μ / mm^{-1}	0.777
F(000)	616.0
Crystal size/mm ${ }^{3}$	$0.35 \times 0.3 \times 0.2$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection	11.654 to 143.472°
Index ranges	$-10 \leq \mathrm{h} \leq 11,-15 \leq \mathrm{k} \leq 16,-13 \leq 1 \leq 10$
Reflections collected	3083
Independent reflections	$1274\left[\mathrm{R}_{\text {int }}=0.0286, \mathrm{R}_{\text {sigma }}=0.0307\right]$
Data/restraints/parameters	1274/0/106
Goodness-of-fit on F^{2}	1.080
Final R indexes $[\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0719, \mathrm{wR}_{2}=0.1623$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0742, \mathrm{wR}_{2}=0.1673$
Largest diff. peak/hole / e \AA^{-3}	0.47/-0.55

Table S4. Crystal Data for [5]he-BQAO [CCDC 2248789]

Identification code
[5]he-BQAO
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

Unit cell dimensions
$\mathrm{C}_{24} \mathrm{H}_{13} \mathrm{NO}_{2}$
347.35
308.0
triclinic
P-1
$\mathrm{a}=8.0822(16) \AA, \alpha=61.646(6) \mathrm{deg}$.
$b=11.0340$ (19) $\AA, \beta=69.236(4)$ deg.
$\mathrm{c}=11.143(2) \AA, \gamma=83.968(6) \mathrm{deg}$.
Volume
815.3(3) \AA^{3}

Z
pcalcmg $/ \mathrm{mm}^{3} \quad 1.415$
$\mu / \mathrm{mm}^{-1} \quad 0.090$
$\mathrm{F}(000) \quad 360.0$
Crystal size/mm ${ }^{3}$
$0.41 \times 0.4 \times 0.21$
Radiation
2Θ range for data collection
Index ranges
$\operatorname{MoK} \alpha(\lambda=0.71073)$

Reflections collected
Independent reflections
Data/restraints/parameters
4.208 to 54.962°
$-10 \leq \mathrm{h} \leq 10,-14 \leq \mathrm{k} \leq 14,-14 \leq 1 \leq 14$

Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
22848
$3742\left[\mathrm{R}_{\text {int }}=0.0624, \mathrm{R}_{\text {sigma }}=0.0465\right]$
3742/0/244

Largest diff. peak/hole / e \AA^{-3}
1.030
$\mathrm{R}_{1}=0.0429, \mathrm{wR}_{2}=0.1031$
$\mathrm{R}_{1}=0.0650, \mathrm{wR}_{2}=0.1158$
0.17/-0.17

Table S5. Crystal Data for [6]he-BQAO [CCDC 2248790]

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

Unit cell dimensions

Volume
Z
ρ calcmg $/ \mathrm{mm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
[6]he-BQAO
$\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{NO}_{2}$
397.41
293.9(2)
monoclinic
I2/a
$\mathrm{a}=15.1670(4) \AA, \alpha=90 \mathrm{deg}$.
$b=10.9238(4) \AA, \beta=94.397(3)$ deg.
$\mathrm{c}=11.5354(4) \AA, \gamma=90 \mathrm{deg}$.
1905.56(10) \AA^{3}

4
1.385
0.694
824.0
$0.6 \times 0.5 \times 0.3$
$\mathrm{CuK} \alpha(\lambda=1.54184)$
9.988 to 142.72°
$-18 \leq \mathrm{h} \leq 15,-10 \leq \mathrm{k} \leq 13,-12 \leq 1 \leq 14$
5024
1823 [$\left.\mathrm{R}_{\text {int }}=0.0347, \mathrm{R}_{\text {sigma }}=0.0250\right]$
1823/0/142
1.081
$\mathrm{R}_{1}=0.0606, \mathrm{wR}_{2}=0.1541$
$\mathrm{R}_{1}=0.0637, \mathrm{wR}_{2}=0.1589$
0.24/-0.41

Table S6. Crystal Data for $h p$-BQAO [CCDC 2249112]

Identification code	$h p-B Q A O$
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{13} \mathrm{NO}_{2}$
Formula weight	371.37
Temperature/K	200.0
Crystal system	orthorhombic
Space group	$\begin{aligned} & \mathrm{Pmn} 2_{1} \\ & \mathrm{a}=16.208(4) \AA, \alpha=90 \mathrm{deg} . \end{aligned}$
Unit cell dimensions	$\begin{aligned} & \mathrm{b}=4.0870(10) \AA, \beta=90 \mathrm{deg} \\ & \mathrm{c}=12.278(2) \AA, \gamma=90 \mathrm{deg} \end{aligned}$
Volume	813.3(3) \AA^{3}
Z	2
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.516
μ / mm^{-1}	0.096
$\mathrm{F}(000)$	384.0
Crystal size/mm ${ }^{3}$	$0.39 \times 0.1 \times 0.03$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection	4.162 to 55.042°
Index ranges	$-21 \leq \mathrm{h} \leq 16,-4 \leq \mathrm{k} \leq 5,-15 \leq 1 \leq 14$
Reflections collected	4870
Independent reflections	$1841\left[\mathrm{R}_{\mathrm{int}}=0.0506, \mathrm{R}_{\text {sigma }}=0.0556\right]$
Data/restraints/parameters	1841/1/136
Goodness-of-fit on F^{2}	1.059
Final R indexes [I>=2 σ (I)]	$\mathrm{R}_{1}=0.0448, \mathrm{wR}_{2}=0.0901$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0632, \mathrm{wR}_{2}=0.0994$
Largest diff. peak/hole / e \AA^{-3}	0.19/-0.24

VI. Additional Spectra and Data

Fig. S1. (a) Absorption (Abs.) spectra at 298 K in toluene solutions at $1.0 \times 10^{-5} \mathrm{M}$. (b) Photoluminescence spectra of the $3 \mathrm{wt} \% \mathrm{DCz}-\mathrm{BTP}$ host blended films at 298 K .

Fig. S2. Absorption spectra (Abs.) and fluorescence spectra (FL.) measured in the solvents with different polarities at 298 K .

Fig. S3. Normalized photoluminescence spectra (PL), full-width at half-maximum (FWHM) and PL quantum yields (PLQY) of [5]he-BQAO, [6]he-BQAO and $\boldsymbol{h} \boldsymbol{p}$-BQAO doped in DCz-BTP films with different dopant concentrations of $1 \%, 3 \%$, $5 \%, 10 \%$ and 20% at 298 K .

QAO

$$
\underline{2.54} \mathrm{~T}_{1}\left\langle\mathrm{~S}_{1}\right| \widehat{H}\left|\mathrm{~T}_{1}\right\rangle=0.22 \mathrm{~cm}^{-1}
$$

$\xrightarrow{2.56} \mathrm{~T}_{1}\left\langle\mathrm{~S}_{1}\right| \widehat{H}\left|\mathrm{~T}_{1}\right\rangle=1.51 \mathrm{~cm}^{-1}$

Fig. S4. Spin orbit coupling (SOC) analysis of QAO and $\boldsymbol{h} \boldsymbol{p}$-BQAO

$$
\begin{aligned}
& \uparrow \quad 3.30 \quad \mathrm{~T}_{5}\left\langle\mathrm{~S}_{1}\right| \widehat{H}\left|\mathrm{~T}_{5}\right\rangle=6.59 \mathrm{~cm}^{-1} \\
& S_{1} 3.15 \\
& \begin{array}{llll}
\frac{3.10}{3.0} & \mathrm{~T}_{4} & \left\langle\mathrm{~S}_{1}\right| \widehat{H}\left|\mathrm{~T}_{4}\right\rangle=6.14 \mathrm{~cm}^{-1} \\
\begin{array}{ll}
3.00 & \mathrm{~T}_{3}
\end{array}\left\langle\mathrm{~S}_{1}\right| \widehat{H}\left|\mathrm{~T}_{3}\right\rangle=1.89 \mathrm{~cm}^{-1} \\
\hline 2.97 & \mathrm{~T}_{2}^{3} & \left\langle\mathrm{~S}_{1}\right| \hat{H}\left|\mathrm{~T}_{2}\right\rangle=0.86 \mathrm{~cm}^{-1}
\end{array}
\end{aligned}
$$

Fig. S5. TGA thermograms measured at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$.

Fig. S6. (a) Current density-voltage-luminance curves of OLEDs. (b) Luminance (L)-deterioration curves of QAO and $\boldsymbol{h} \boldsymbol{p}$-BQAO-based OLEDs at the initial luminance $\left(\mathrm{L}_{0}\right)$ of $100 \mathrm{~cd} \mathrm{~m}^{-2}$.

Fig. S7. Photoluminescence spectra intensity-emission angle curves with simulated horizontal dipole ratios (Θ) values in (a) QAO, (b) [5]he-BQAO and (c) $\boldsymbol{h} \boldsymbol{p}$-BQAO-doped DCz-BTP films (3 wt \%).

Fig. S8. Cyclic voltammograms measured in dry DCM containing 0.1 M of $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$.

Table S7. Summary of photoluminescence spectra data in different polar solvents.

	In toluene		In THF		In DCM	
Compound	λ_{em}	FWHM	λ_{em}	FWHM	λ_{em}	FWHM
	$[\mathrm{nm}]$	$[\mathrm{nm}]$	$[\mathrm{nm}]$	$[\mathrm{nm}]$	$[\mathrm{nm}]$	$[\mathrm{nm}]$
Pe-QAO	424	13	427	22	430	19
QAO	452	25	458	34	461	33
[5]he-BQAO	458	32	465	41	471	43
[6]he-BQAO	474	34	477	44	486	46
$\boldsymbol{h} \boldsymbol{p}$-BQAO	456	34	469	50	478	53

Table S8. Summary of molecular structures, photophysical properties and OLED performances for blue $\mathrm{N}-\mathrm{CO}$ MR-emitters.

1. Molecular structures

QAO

3-PhQAD

7-PhQAD

$\mathrm{Mes}_{3} \mathrm{DiKTa}$

DQAO

QA-PF

QA-PCN

QA-PMO

Qa.pCz

QAO-PhCZ

2. Photophysical properties and OLED performances

Emitters	In solution			In film			In device		
	$\begin{gathered} \lambda_{\mathrm{em}} \\ {[\mathrm{~nm}]} \end{gathered}$	$\begin{gathered} \text { FWHM } \\ {[\mathrm{nm}]} \end{gathered}$	$\begin{gathered} \Phi_{\mathrm{PL}} \\ {[\%]} \end{gathered}$	$\begin{gathered} \hline k_{\mathrm{R}}^{\mathrm{S}} \\ {\left[10^{7}\right.} \\ \left.\mathrm{s}^{-1}\right] \end{gathered}$	$\begin{gathered} k_{\mathrm{RISC}} \\ {\left[10^{4}\right.} \\ \left.\mathrm{s}^{-1}\right] \end{gathered}$	$\begin{gathered} \text { EL }_{\text {peak }} \\ {[\mathrm{nm}]} \end{gathered}$	$\begin{gathered} \text { FWHM } \\ {[\mathrm{nm}]} \end{gathered}$	$\begin{gathered} \text { EQE } \\ {[\%]} \end{gathered}$	Ref.
$h p$-BQAO	456	34	87	6.8	25.4	471	41	24.1	This work
QAO	466	32	72	-	-	468	39	19.4	5
3-PhQAD	466	30	73	4.0	1.2	480	44	19.1	6
7-PhQAD	464	22	68	3.6	0.6	472	34	18.7	6
Mes3DiKTa	468	29	80	$5.4{ }^{a}$	$3.1{ }^{\text {a }}$	480	36	21.1	2

DQAO	465	33	59	-	-	472	34	15.2	7
QA-PF	465	23			4.9	474	27	16.8	8
QA-PCN	462	25			16.1	473	30	16.9	8
QA-PMO	475	27			2.2	484	27	15.0	8
QA-PCZ	471	29	89	9.6	5.0	482	29	17.5	8
QAO-PhCZ	461	29	68	4.3	-	467	36	14.0	9
QA-1	434	31	66	8.6	1.5	455	49	17.1	10
QA-2	444	22	97	1.5	85.0	463	37	19.0	10
BOQAO	474	28	99	3.2	2.4	484	32	21.8	11
CZ2CO	440	16	84	-	-	$445 / 445^{b}$	$23 / 26^{b}$	$13.0 / 25.6^{b}$	1

${ }^{a}$ Measured in solution. ${ }^{b}$ With TADF sensitizers.

VII. References

[1] C. Cao, J.-H. Tan, Z.-L. Zhu, J.-D. Lin, H.-J. Tan, H. Chen, Y. Yuan, M.-K. Tse, W.-C. Chen, C.-S. Lee, Angew. Chem. Int. Ed. 2023, 62, e202215226.
[2] D. Hall, S. M. Suresh, P. L. dos Santos, E. Duda, S. Bagnich, A. Pershin, P. Rajamalli, D. B. Cordes, A. M. Z. Slawin, D. Beljonne, A. Köhler, I. D. W. Samuel, Y. Olivier, E. Zysman-Colman, Adv. Optical Mater. 2020, 8, 1901627.
[3] B. Lei, Z. Huang, S. Li, J. Liu, Z. Bin, J. You, Angew. Chem. Int. Ed. 2023, 62, e202218405.
[4] (a) K. Masui, H. Nakanotani, C. Adachi, Org. Electron. 2013, 14, 2721; (b) Y. Liu, X. Xiao, D. Yang, D. Ma, J. Liu, B. Lei, Z. Bin, J. You, Angew. Chem. Int. Ed. 2022, 61, e202210210.
[5] Y. Yuan, X. Tang, X.-Y. Du, Y. Hu, Y.-J. Yu, Z.-Q. Jiang, L.-S. Liao, S.-T. Lee. Adv. Optical Mater. 2019, 7, 1801536.
[6] X. Li, Y.-Z. Shi, K. Wang, M. Zhang, C.-J. Zheng, D.-M. Sun, G.-L. Dai, X.-C. Fan, D.-Q. Wang, W. Liu, Y.-Q. Li, J. Yu, X.-M. Ou, C. Adachi, X.-H. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 13472.
[7] S.-N. Zou, C.-C. Peng, S.-Y.Yang, Y.-K. Qu, Y.-J. Yu, X. Chen, Z.-Q. Jiang, L.-S. Liao, Org. Lett. 2021, 23, 958.
[8] X. Qiu, G. Tian, C. Lin, Y. Pan, X. Ye, B. Wang, D. Ma, D. Hu, Y. Luo, Y. Ma, Adv. Optical Mater. 2021, 9, 2001845.
[9] S.-Y. Yang, S.-N. Zou, F.-C. Kong, X.-J. Liao, Y.-K. Qu, Z.-Q. Feng, Y.-X.

Zheng, Z.-Q. Jiang, L.-S. Liao, Chem. Commun. 2021, 57, 11041.
[10] H. Min, I. S. Park, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 7643.
[11] Y.-J. Yu, S.-N. Zou, C.-C. Peng, Z.-Q. Feng, Y.-K. Qu, S.-Y. Yang, Z.-Q. Jiang, L.-S. Liao, J. Mater. Chem. C 2022, 10, 4941.

VIII. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of [5] he-BQAO $\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of [5]he-BQAO $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of [6]he-BQAO $\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of [6]he-BQAO $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $9\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $9\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}$ (DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}$ (DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{h} \boldsymbol{p}$-BQAO $\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{h} \boldsymbol{p}$-BQAO $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{p e} \boldsymbol{e} \mathbf{Q A O}\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{p e}$ - QAO $\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Q A O}\left(\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{Q A O}\left(\mathrm{CDCl}_{3}\right)$

IX. Copies of HPLC spectra

HPLC trace of $\boldsymbol{p e} \boldsymbol{e} \mathbf{- Q A O}$

<Sample Information>

Sample Name : pe-QAO
Method Filename : $4 \%-0.6 \mathrm{~mL} / \mathrm{min}$
Injection Volume : $10 \mu \mathrm{~L}$

<Chromatogram>

mV

$p e-$ QAO

Peak\#	Ret. Time	Area	Height	Area\%
1	5.466	6040	484	0.093
2	11.788	41061	2085	0.629
3	22.659	6475731	45451	99.278
Total		6522832	48020	

HPLC trace of QAO

<Sample Information>

Sample Name
: QAO
Method Filename : 3\%-0.7 mL/min
Injection Volume : $6 \mu \mathrm{~L}$
<Chromatogram>

QAO

Peak\#	Ret. Time	Area	Height	Area\%
1	6.600	4285	595	0.025
2	17.569	16981683	302197	99.975
Total		16985968	302792	

HPLC trace of [5]he-BQAO

<Sample Information>
Sample Name : [5]he-BQAO
Method Filename : $3 \%-0.7 \mathrm{~mL} / \mathrm{min}$
Injection Volume : $4 \mu \mathrm{~L}$
<Chromatogram>

[5]he-BQAO

Peak\#	Ret. Time	Area	Height	Area\%
1	10.717	4806	323	0.148
2	11.602	3234697	117698	99.852
Total		3239503	118021	

HPLC trace of [6]he-BQAO

<Sample Information>
Sample Name : [6]he-BQAO
Method Filename : $3 \%-0.7 \mathrm{~mL} / \mathrm{min}$
Injection Volume $: 6 \mu \mathrm{~L}$

<Chromatogram>

mV

[6]he-BQAO

Peak\#	Ret. Time	Area	Height	Area\%
1	7.030	1469	115	0.052
2	14.433	2845481	196606	99.948
Total		2846950	196721	

HPLC trace of $\boldsymbol{h} \boldsymbol{p}$-BQAO

<Sample Information>
Sample Name $: h p-B Q A O$
Method Filename : $4 \%-0.7 \mathrm{~mL} / \mathrm{min}$
Injection Volume $: 6 \mu \mathrm{~L}$
<Chromatogram>

