Supporting Information

Ultra-robust, High-adhesive, Self-healing, and Photothermal Zwitterionic Hydrogels toward Multi-sensory Application and Solar-Driven Evaporation

Youyou Chen^{1,2,3}, Chen Zhang^{2,3*}, Rui Yin^{2,3}, Minghan Yu^{2,3}, Yijie Liu⁴, Yaming Liu^{1,2,3}, Haoran Wang^{2,3}, Feihua Liu^{2,3}, Feng Cao⁴, Guoqing Chen^{1*}, and Weiwei Zhao^{1,2,3*}

¹ State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China

² Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China

³ Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China

⁴ School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055,
 People's Republic of China

* Corresponding Author

E-mail: zhangchen2020@hit.edu.cn, chenguoqing@hit.edu.cn, wzhao@hit.edu.cn

Figure S1. TEM image and diameter distribution of PDA shell thickness.

Figure S2. FTIR spectra of LM, PDA, and LM@PDA.

Figure S3. Time-dependent dispersion of LM@PDA after self-polymerization (left)

and LMNPs in water after ultrasonication (right).

Figure S4. Size distributions of LM and LM@PDA.

Figure S5. SEM image of the cross section of the freeze-dried PSBMA-LM@PDA hydrogel with corresponding elemental mapping by EDS.

Figure S6. Illustration of PSBMA-LM@PDA hydrogels upon stretching.

Figure S7. Tensile stress-strain curves of the pure PSBMA, PSBMA-PDA and PSBMA-LM@PDA hydrogels.

Figure S8. Frequency sweeps of PSBMA-LM@PDA hydrogels with different LM@PDA contents

Figure S9. Tan δ of PSBMA-LM@PDA hydrogels with different LM@PDA contents

Figure S10. Photos of PSBMA-LM@PDA-5 hydrogel adhered on glass, filter paper, poly(methyl methacrylate) (PMMA), Cu, Al, plastic, nitrile rubber, silicone rubber, and human skin.

Figure S11. Lap sheer curve of pure PSBMA hydrogel adhered on Al.

Figure S12. Optical images of two fractured hydrogel segments contact together and

then under stretching.

Figure S13. Self-healing process observed by an optical microscope. A crack autonomously disappeared after 12 h at room temperature.

Figure S14. Optical images of two fractured PSBMA hydrogel segments contacted together and failed to heal.

Figure S15. Photographs of the PSBMA-LM@PDA-5 hydrogel placed in water for

different times.

Figure S16. The water evaporation enthalpy of bulk water and water in PSBMA-LM@PDA-0, PSBMA-LM@PDA-1, PSBMA-LM@PDA-3, PSBMA-LM@PDA-5 hydrogels.

Zwitterionic hydrogels	Tensile strength (MPa)	Stain (%)	Toughness (MJ/m ³)	REF	
PSBMA-LM@PDA-5	1.30	555.5	4.73		
PSBMA-LM@PDA-2	0.69	1343	7.28	This work	
PSBMA-LM@PDA-1	0.44	1555	6.66		
CS-P(AM-MPC-AA)-Fe ³⁺	1.07	1075	7.03	[37]	
PCB/PSB	1.00	170	—	[15]	
AMPS/SBAA	0.91	33.6	—	[38]	
PSBMA/SA-Ca ²⁺	0.73	410	—	[39]	
PCBAA/SA-Ca ²⁺	0.69	330	—	[40]	
CNC@P(SBMA-co-AM)	0.61	1250	—	[41]	
Ca-GG/PAAm-ZP	0.41	1890	3.27	[42]	
PVA-P(SBMA-co-HEMA)-HCl	0.38	337	0.52	[43]	
(pCBM/pSB)	0.32	225	_	[44]	
PSBMA-Clay-LiCl	0.30	2200	5.48	[45]	
VBIPS	0.20	440	0.24	[46]	
PBA/CPA	0.08	1095	0.045	[47]	
PSBMA-NIPAAm-MPBA	70	273	_	[48]	
p(CBMA-co-HEMA)	52	532	_	[49]	

 Table S1. Comparisons of PSBMA-LM@PDA hydrogels with those reported

 zwitterionic hydrogels in terms of tensile strength, strain, and toughness, respectively.

"----": Not available or not mentioned in references.

Material	TCR (°C ⁻¹)	Temperature range (°C)	REF
PSBMA-LM@PDA	0.15	20-60	This work
PSBMA-Clay-LiCl	0.14	-20-10	[45]
PVA/CA/AgNPs	0.076	30-40	[57]
PVA/PU/Ti ₃ C ₂ T _x	0.0527	0-30	[58]
PVA/DMSO/rGO/GO	0.038	15-90	[59]
PVA/Gly/AgNPs@CNT	0.0299	-20-20	[60]
PAM-SBMA/TEMPO-CNF- PANI/Gly	0.02	20-80	[47]
PANI NFs	0.0164	40-110	[61]
XSBR/SSCNT	0.0163	30-100	[62]
rGO	0.013	25-45	[63]
CNTs/CB/PVA/Gly	0.00935	30-90	[64]

 Table S2. Comparison of performance parameters with various temperature sensors

 reported in the literature.

Material		Evaporation rate (kg m ⁻² h ⁻¹)	Efficiency (%)	REF	
	PSBMA- LM@PDA	2.54	90.3	This work	
Hydrogel	PVA/SLS-CNT	2.09	80.4	[69]	
	Chitosan/PNAGA- CNTs	2.42	92	[70]	
Coating	PU/CNT/ZCB	2.2	93.5	[71]	
Coating	PDMAPS	1.9	98.8	[72]	
	APNP	1.41	87.6	[73]	
Aerogel	IP-SLC	1.29	94	[74]	
	rGO-SA-CNT	1.622	83	[75]	
Biomass	Mushroom	1.475	78	[76]	
	Plasmonic wood	1	68	[77]	

 Table S3. Water evaporation performance of the PSBMA-LM@PDA-5 hydrogel

 based evaporator compared with previous reports under 1 sun.

Table S4. Comparison be	etween this work	and previously r	reported representative
hydrogels in terms of tensi	le strength, self-adl	hesive, self-healin	g, photothermal, strain
sensing, pressure sensing, t	emperature sensing	g, and solar evapo	ration performance.

Journal	Materials	Conduc tivity (S m ⁻¹)	Tensile strength (MPa)	Self- adhesive	Self- healing	Phototh ermal	Strain sensing	Pressure sensing	Tempera ture sensing	Solar evapor ation	REF
	PSBMA- LM@PDA	0.45	1.3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	This work
Adv. Funct. Mater	PM-CNC- PANI-EGaIn	0.0002	0.11	No	_	Yes	Yes	Yes	Yes	Yes	[78]
Adv. Funct. Mater	PAM/PSA- LMGO	0.036	0.303	Yes	Yes	_	Yes	Yes	_	_	[25]
Nano Energy	PAA-CNF- LMNPs	0.45	0.12	No	Yes	_	Yes	Yes	—	—	[19]
ACS nano	PSBMA-DA	0.03	Yes	Yes	Yes	No	Yes	Yes	Yes	No	[4]
ACS Appl. Mater. Interfaces	PAA-co-PDP	1.65	0.095	Yes	Yes	No	Yes	Yes	Yes	No	[79]
Adv. Funct. Mater	Betaine- AgNPs-NaCl- Gly/water	0.00485	7.33	No	_	No	Yes	_	Yes	No	[80]
Chemical Engineering Journal	PCMCS/PSA- SHA-Bn	4.208	0.071	Yes	Yes	No	Yes	Yes	Yes	No	[81]
Chemical Engineering Journal	PAM/PSA- LM/CNTs	94	0.018	Yes	Yes	No	Yes	—	_	No	[23]
ACS nano	PVA-GO	—	1.77	No	—	Yes	_	—	_	Yes	[82]
Macromol. Mater. Eng.	PAA-PEDOT	6.6	0.78	_	_	Yes	Yes	Yes	—	Yes	[83]
Materials Today	PNIPAAm- PPy	Yes	0.03	—	_	Yes	Yes	—	—	—	[84]
Chemical Engineering Journal	PAM/PAA- [VBIM ⁺]- AuNRs	10.73	0.148	No	_	Yes	Yes	Yes	Yes	_	[85]
Adv. Funct. Mater	PVA/SA/PAA S	_	0.026	_	Yes	Yes	_	_	_	Yes	[86]
Nano Energy	PVA/PHEAA- Sb2S3@PPy- DA	2.26	1.25	Yes	Yes	Yes	Yes	_	_	_	[87]

"----": Not mentioned in references.