Supporting Information

Origins and characterization of oxygen loss phenomenon in layered oxide cathodes of Li-ion batteries

Junrun Feng^a, Zhuo Chen^a, Weihua Zhou^a, Zhangxiang Hao^{a,*}

Table S1 A summary of different types of LLMO cathodes, with typical examples and their characteristics related to oxygen loss phenomenon. Notes: the value of capacity and voltage hysteresis were obtained from the voltage and discharge/charge profile of these cathode materials.

Categories	LLMO composition	Capacity (mAhg ⁻¹)	voltage hysteresis (V <i>vs.</i> Li ⁺ /Li)	Gas formed during cycling	CEI composition	Thermal instable temperature (°C)
Traditional LLMO	LiCoO ₂ ¹⁻⁵	274	~4.5	O ₂ , CO ₂	LiF, Li ₂ CO ₃ , Li ₂ O, Li _x PF _y , Li _x PF _y O _z ,	240
	LiNiO ₂ ^{5–8}	275	~4.6	O_2, CO_2	Li ₂ CO ₃ , LiOH	200
	LiMnO ₂ 9	270	/	/	/	/
	$Li(Ni_{0.85}Mn_{0.075}Co_{0.075})O-2^{10,11}$	206	~4.2	O ₂ , CO ₂	Li ₂ CO ₃ , LiF, Li _x PF _y , Li _x PF _y O _z ,	225
	$Li(Ni_{0.8}Mn_{0.1}Co_{0.1})O_2^{11-14}$	203	~4.2	O ₂ , CO ₂	Li _x PF _y O _z , LiOH, Li ₂ O ₃ , Li ₂ O	232
NMC-based	$Li(Ni_{0.7}Mn_{0.15}Co_{0.15})O_2^{11,12}$	194	4.3	O_2, CO_2	/	242
LLMO	$Li(Ni_{0.6}Mn_{0.2}Co_{0.2})O_2^{11,12,15}$	187	/	O_2, CO_2	Li ₂ O ₃ , Li ₂ O	264
	$Li(Ni_{0.5}Mn_{0.2}Co_{0.3})O_2^{11,12,16}$	175	/	O ₂ , CO ₂	Li _x PF _y , Li _x PF _y O _z , LiF	290
	$\begin{array}{c} Li(Ni_{1/3}Mn_{1/3}Co_{1/3})O-\\ & 2^{11,12,17,18} \end{array}$	163	/	O ₂ , CO ₂	LiF, Li ₂ CO ₃	306
	$Li[Ni_{0.5}Mn_{0.5}]O_2{}^{19,20}$	163	~4.3	/	Li _x PF _y O _z , Li ₂ CO ₃ , LiF	307.1
	Li[Ni _{0.6} Mn _{0.5}]O ₂ ¹⁹	165	~4.3	/	/	298.1
	Li[Ni _{0.7} Mn _{0.5}]O ₂ ¹⁹	171	~4.3	/	/	273.7
	Li[Ni _{0.8} Mn _{0.5}]O ₂ ¹⁹	205	~4.3	//	/	249
NI-rich LLMO	Li[Ni _{0.9} Mn _{0.5}]O ₂ ¹⁹	212	~4.3	/	/	230.4
(Exclude NMC)	$LiNi_{0.94}Co_{0.06}O_2{}^{21}$	~230	~4.1	/	/	191
	LiNi _{0.9} Co _{0.1} O ₂ ²²	~190	~4.2	/	/	/
	$LiNi_{0.90}Co_{0.07}Mg_{0.03}O_2{}^{23}$	228.3	~4.3	/	/	243.7
	$LiAl_{0.05}Ni_{0.95}O_2{}^{24}$	~200	~4.5	O_2, CO_2	/	/
	$Li(Ni_{0.8}Co_{0.15}Al_{0.05})O_2{}^{21}$	~200	/	/	/	241
Li- and Mn- rich LLMO	xLi ₂ MnO ₃ (1–x) LiMO ₂ ^{6,25,26}	~300	~4.4	O ₂ , CO ₂	/	/
	$Li_{1.286}Ni_{0.071}Mn_{0.643}O_2{}^{27}$	250	~4.25	O ₂ , CO ₂	/	/
	$Li_{1.2}Ni_{0.2}Mn_{0.6}O_2^{-28}$	~300	~4.2	/	/	/
	$Li_{1.2}Co_{0.1}Mn_{0.55}Ni_{0.15}O_2^{10,29}$	~200	/	/	LiF, LiPO _y F _z , Li ₂ CO ₃	/

	$Li_{1.2}Ni_{0.13}Mn_{0.54}Co_{0.13}O_2{}^{30}$	~275	~4.5	O ₂ , CO ₂	/	/
Other Li-rich LLMO	Li ₂ RuO ₃ ³¹⁻³⁴	~164	~4.1	O ₂ , CO ₂	Li ₂ CO ₃ , LiF	/
	Li ₂ Ru _{0.75} Ti _{0.25} O ₃ ³⁵	~180	~4.0	O ₂ , CO ₂	/	/
	Li ₂ Ru _{0.75} Mn _{0.25} O ₃ ³⁵	~177	~4.0	O ₂ , CO ₂	/	/
	Li ₂ Ru _{0.75} Fe _{0.25} O ₃ ³⁵	~177	~3.9	O ₂ , CO ₂	/	/
	$Li_{0.7}Mn_{0.78}Co_{0.22}O_2^{-36}$	~260	~4.5	O ₂ , CO ₂	/	/
Other Min-rich	$Li_{0.75}Mn_{0.78}Co_{0.11}Ni_{0.11}O_2{}^{36}$	~245	~4.5	CO ₂	/	/
	$Li_{0.74}Mn_{0.78}Ni_{0.22}O_2{}^{36}$	~230	~4.3	CO ₂	/	/

Table S2 The contribution of highlighted methods and the modification strategies based on the study

Characterization	Phenomenon detected/	Modification	Examples	Improvement
methods	degradation mechanism	strategies	Examples	(Retention, cycles, Current)
DEMS/OMES Soft-XAS, RIXS	Gaseous products release at high voltage during cycles	Composition design& electrolyte additives	Al ³⁺ substitution in LiNiO ₂ :	LiAl _{0.1} Ni _{0.9} O ₂ :~100% , 50, 0.4 mA cm ⁻²
			LiAl _{0.1} Ni _{0.9} O ₂ ³⁷	LiNiO ₂ : 68%, 50, 0.4 mA cm ⁻²
			Addition of Lithium fluoromalonate(difluoro)borate (LiFMDFB) ³⁸	LiFMDFB added: 85%, 200, 0.5; Without LiFMDFB: 40%, 200, 0.5
EPR	Crystal structures changes during cycling and thermal treatment	Elemental doping	Yttrium surface gradient doping in LiNi _{0.93} Co _{0.07} O ₂ (NC): LiNi _{0.91} Co _{0.07} Y _{0.02} O ₂ (NCY) ³⁹	NC shows a structure transformation from layered to spinel that started at 200 °C, and to spinel at above 300 °C, while NCY shows a much better stability
			Nd/Al dual doped	Nd/Al dual doped Li _{1.2} Mn _{0.533} Ni _{0.267} O ₂ :
			$L_{1} M_{n_0} S_{33} N_{i_0} 267 O_2^{40}$	90.1, 200, 1C;
			1.2 0.333 0.207 2	Li _{1.2} Mn _{0.533} Ni _{0.267} O ₂ : 76.4, 200. 1C.
TEM, XAS, XPS, NMR	The formation of CEI during the cycles, enhancing the oxygen loss	Coating layer	Li ₂ TO ₃ coating on LiNi _{0.5} Mn _{0.5} O ₂ ²⁰	Li ₂ TO ₃ coated LiNi _{0.5} Mn _{0.5} O ₂ : 83, 100. 0.2; LiNi _{0.5} Mn _{0.5} O ₂ : 58, 100, 0.2.
	Cracks formed during the	Modification of	Synthesis of layered nanorod gradient	NRG: 88.3%, 1000, 1C
CT, TXM, ND	cycles, under cell,	synthesis	(NRG) Li[Ni _{0.81} Co _{0.06} Mn _{0.13}]O ₂ cathode	Li[Ni _{0.82} Co _{0.14} Al _{0.04}]O: 55.9%, 1000, 1C
	electrode, particle level	condition	particle ⁴¹	
TXM	Inhomogeneous lithiation across the whole electrode and even single particle			·
CDI	Nano scaled Stain stress arisen at particles under nano scales, inducing the following degradation	To be developed		

A. Yano, M. Shikano, A. Ueda, H. Sakaebe and Z. Ogumi, *J. Electrochem. Soc.*, 2017, **164**, A6116–A6122.

2 H. Wang, Y. Jang, B. Huang, D. R. Sadoway and Y. Chiang, *J. Electrochem. Soc.*, 1999, **146**, 473–480.

J. N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu and H. Li, *Energy Storage Mater.*, 2018, **14**, 1–7.

- 4 Sungjemmenla, S. K. Vineeth, C. B. Soni, V. Kumar and Z. W. Seh, *Energy Technol.*, 2022, **10**, 1–12.
- 5 D. D. MacNeil, Z. Lu, Z. Chen and J. R. Dahn, *J. Power Sources*, 2002, **108**, 8–14.
- J. K. Papp, N. Li, L. A. Kaufman and A. J. Naylor, 1–28.
- 7 C. Lee, Y. Yokoyama, Y. Kondo, Y. Miyahara, T. Abe and K. Miyazaki, *Adv. Energy Mater.*, 2021, **11**, 1–8.
- M. Bianchini, M. Roca-Ayats, P. Hartmann, T. Brezesinski and J. Janek, *Angew. Chemie Int. Ed.*, 2019,
 58, 10434–10458.
- 9 A. R. ARMSTRONG and P. G. BRUCE, *Nature*, 1996, **381**, 499–500.
- H. Q. Pham, M. Mirolo, M. Tarik, M. El Kazzi and S. Trabesinger, *Energy Storage Mater.*, 2020, **33**, 216–229.
- 11 H. J. Noh, S. Youn, C. S. Yoon and Y. K. Sun, *J. Power Sources*, 2013, **233**, 121–130.
- S. Bak, E. Hu, Y. Zhou, X. Yu, S. D. Senanayake, S. Cho, K. Kim, K. Y. Chung, X. Yang and K. Nam, *Appl. Mater. Interfaces*, 2014, 6, 22594–22601.
- 13 J. Wandt, A. T. S. Freiberg, A. Ogrodnik and H. A. Gasteiger, *Mater. Today*, 2018, **21**, 825–833.
- 14 W. Wang, Q. Yang, K. Qian and B. Li, *J. Energy Chem.*, 2020, **47**, 72–78.
- 15 H. Gao, F. Maglia, P. Lamp, K. Amine and Z. Chen, *ACS Appl. Mater. Interfaces*, 2017, **9**, 44542–44549.
- M. Hekmatfar, I. Hasa, R. Eghbal, D. V. Carvalho, A. Moretti and S. Passerini, *Adv. Mater. Interfaces*, 2020, 7, 1–13.
- 17 F. La Mantia, F. Rosciano, N. Tran and P. Novák, *J. Electrochem. Soc.*, 2009, **156**, A823.
- Y. Qian, P. Niehoff, M. Börner, M. Grützke, X. Mönnighoff, P. Behrends, S. Nowak, M. Winter and F. M.
 Schappacher, *J. Power Sources*, 2016, **329**, 31–40.
- Y. K. Sun, D. J. Lee, Y. J. Lee, Z. Chen and S. T. Myung, *ACS Appl. Mater. Interfaces*, 2013, 5, 11434–
 11440.
- 20 G. Jia, S. Liu, G. Yang, F. Li, K. Wu, Z. He and X. Shangguan, *Ionics (Kiel).*, 2019, **25**, 399–410.
- 21 W. Li, A. Dolocan, J. Li, Q. Xie and A. Manthiram, *Adv. Energy Mater.*, 2019, **9**, 1–9.

- 22 D. Li, Z. Peng, H. Ren, W. Guo and Y. Zhou, *Mater. Chem. Phys.*, 2008, **107**, 171–176.
- 23 H. Li, P. Zhou, F. Liu, H. Li, F. Cheng and J. Chen, *Chem. Sci.*, 2019, **10**, 1374–1379.
- N. Li, S. Sallis, J. K. Papp, B. D. McCloskey, W. Yang and W. Tong, *Nano Energy*, ,
 DOI:10.1016/j.nanoen.2020.105365.
- A. Manthiram, J. C. Knight, S. T. Myung, S. M. Oh and Y. K. Sun, *Adv. Energy Mater.*, ,
 DOI:10.1002/aenm.201501010.
- 26 C. S. Johnson, N. Li, C. Lefief and M. M. Thackeray, *Electrochem. commun.*, 2007, **9**, 787–795.
- 27 Y. Zhang, X. Wen, Z. Shi, B. Qiu, G. Chen and Z. Liu, *J. Energy Chem.*, 2023, **82**, 259–267.
- 28 J. Dong, F. Wu, J. Zhao, Q. Shi, Y. Lu, N. Li, D. Cao, W. Li, J. Hao, X. Yang, L. Chen and Y. Su, *Energy Storage Mater.*, 2023, **60**, 102798.
- 29 X. Zhang, H. Jia, Y. Xu, L. Zou, M. H. Engelhard, B. E. Matthews, C. Wang, J. G. Zhang and W. Xu, *J. Power Sources Adv.*, , DOI:10.1016/j.powera.2020.100024.
- T. Liu, J. Liu, L. Li, L. Yu, J. Diao, T. Zhou, S. Li, A. Dai, W. Zhao, S. Xu, Y. Ren, L. Wang, T. Wu, R. Qi, Y.
 Xiao, J. Zheng, W. Cha, R. Harder, I. Robinson, J. Wen, J. Lu, F. Pan and K. Amine, *Nature*, 2022, 606, 305–312.
- Y. Yu, P. Karayaylali, D. Sokaras, L. Giordano, R. Kou, C. Sun, F. Maglia, R. Jung, F. S. Gittleson and Y.
 Shao-horn, 2021, 2, 2322–2334.
- J. C. Hestenes, A. W. Ells, M. Navarro Goldaraz, I. V. Sergeyev, B. Itin and L. E. Marbella, *Front. Chem.*,
 2020, 8, 1–9.
- 33 B. G. Lee and Y. J. Park, *Sci. Rep.*, 2020, **10**, 1–11.
- B. Li, R. Shao, H. Yan, L. An, B. Zhang, H. Wei, J. Ma, D. Xia and X. Han, *Adv. Funct. Mater.*, 2016, 26, 1330–1337.
- Y. Yu, P. Karayaylali, D. Sokaras, L. Giordano, R. Kou, C. J. Sun, F. Maglia, R. Jung, F. S. Gittleson and Y.
 Shao-Horn, *Energy Environ. Sci.*, 2021, **14**, 2322–2334.

- 36 W. Huang, C. Lin, M. Zhang, S. Li, Z. Chen, W. Zhao, C. Zhu, Q. Zhao, H. Chen and F. Pan, *Adv. Energy Mater.*, 2021, **11**, 1–11.
- S. H. Park, K. S. Park, Y. Sun Kook, K. S. Nahm, Y. S. Lee and M. Yoshio, *Electrochim. Acta*, 2001, 46, 1215–1222.
- J. G. Han, J. Bin Lee, A. Cha, T. K. Lee, W. Cho, S. Chae, S. J. Kang, S. K. Kwak, J. Cho, S. Y. Hong and N. S.
 Choi, *Energy Environ. Sci.*, 2018, **11**, 1552–1562.
- 39 Y. Wang, M. Gao, S. Liu, G. Li and X. Gao, , DOI:10.1021/acsami.0c21990.
- 40 W. Jiang, C. Zhang, Y. Feng, B. Wei, L. Chen, R. Zhang, D. G. Ivey, P. Wang and W. Wei, *Energy Storage Mater.*, 2020, **32**, 37–45.
- 41 H. H. Sun, J. A. Weeks, A. Heller and C. B. Mullins, *ACS Appl. Energy Mater.*, 2019, **2**, 6002–6011.