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Fig. S1. X-ray photoelectron spectroscopy (XPS) analysis of PBBT-H (a-c) and PBBT-Me (d-
e). The N(1s) and S(2p) peaks potion of PBBT-H is in agreement with previous results (ref. 1). 
The N(1s) signal relative to the N atom in the pyrrole unit (399.6 eV, PBBT-H) shifts to a higher 
binding energy (399.9 eV, PBBT-H) due to higher electronegativity of the C atom in PBBT-Me 
compared to the H atom in PBBT-H. 
 
 

 
Fig. S2. Fourier-transform infrared (FTIR) spectra of PBBT-H and PBBT-Me. The FTIR 
spectrum of PBBT-H is consistent with previous results (ref. 2). The peak at 1607 cm–1 of the 
PBBT-H’s FTIR spectrum is ascribed to the N=C bond vibration. The inductive effect of the 
CH3– group in PBBT-Me shifts to the peak position at lower wavenumbers (1580 cm–1) due to 
the lowering of the N=C bond strength. 
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Fig. S3. a-b) Thermogravimetric analysis of PBBT-H (a) and PBBT-Me (b). Netszch STA449C 
was used to perform TGA. 5.00 mg of each polymer was heated from 25 °C to 600 °C at a 
heating rate of 10 °C/min under argon purging. The polymers’ decomposition temperatures are 
reported. c-d) Differential scanning calorimetry of PBBT-H (c) and PBBT-Me (d). TA 
Instruments Discovery DSC 250 was used to perform DSC. 5.00 mg of each polymer was 
heated and cooled between -40 °C and 400 °C at a heating rate of 20 °C/min. 
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Fig. S4. GIWAXS analysis: π-π stacking (010) diffraction analysis of PBBT-H (a) and PBBT-
Me (b). 
 

 
Fig. S5. GIWAXS analysis: a) π-π distance (dπ-π) of PBBT-H and PBBT-Me. b) Coherence 
length (Lc(010)) of PBBT-H and PBBT-Me. (c) Paracrystalline disorder (g(010)) of PBBT-H and 
PBBT-Me. 
 

 
Fig. S6. Spectroelectrochemistry: Original absorption spectra of PBBT-H (a) and PBBT-Me (b) 
scanned between 0 V and 1.0 V versus Ag/AgCl in 0.1 M NaCl aqueous solution. The Ag/AgCl 
electrode was grounded and the bias voltage was applied to the polymer films. 
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Fig. S7. Schematic of structure, preparation process, and operation mechanism of OECTs. 
 
 

 
Fig. S8. OECT performance: Transfer curves of PBBT-H (a) and PBBT-Me (b). The drain 
current (ID), the gate current (IG), the square root of ID (ID1/2), the fitted threshold voltage Vth 
and the μC* were reported. 
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Fig. S9. Electrochemical impedance spectroscopy and volumetric capacitance at the voltage 
bias (Vbias) of 0.7 V: a,c) Bode impedance of PBBT-H (a) and PBBT-Me (c). b,d) Fitted 
capacitance versus volume of PBBT-H (b) and PBBT-Me (d) thin films. The measurement and 
fitting are described in the Experiment Section. 
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Fig. S10. Electrochemical impedance spectroscopy and volumetric capacitance at the voltage 
bias (Vbias) of 0.6 V: a,c) Bode impedance of PBBT-H (a) and PBBT-Me (c). b,d) Fitted 
capacitance versus volume of PBBT-H (b) and PBBT-Me (d) thin films. The measurement and 
fitting are described in the Experiment Section. 
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Fig. S11. Nyquist impedance and fitted curves of PBBT-H at voltage bias (Vbias) of 0.6 V (a) 
and 0.7 V (b), and PBBT-Me at Vbias of 0.6 V (c) and 0.7 V (d). These plots show that the 
measured data conform well to the classical Randles circuit model, represented as Rs(Rp||CPE). 
Importantly, the Nyquist impedance plots observed for PBBT-H and PBBT-Me are consistent 
with those typically observed for other organic mixed ionic-electronic conductors (refs. 3, 4).  
 

 
 
Fig. S12. Comparison of p-type, accumulation mode OECT stability under continuous cycling 
in air with aqueous solution electrolyte. Data from Table S1. 
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Fig. S13. Transient response of the OECTs: a-c) Gate voltage applied (0 V to -0.6 V, a) and the 
corresponding τON of the OECTs based on PBBT-H (b) and PBBT-Me (c). d-f) Gate voltage 
applied (-0.6 V to 0 V, d) and the corresponding τOFF of the OECTs based on PBBT-H (e) and 
PBBT-Me (f). g-i) Gate voltage applied (0 V to -0.7 V, g) and the corresponding τON of the 
OECTs based on PBBT-H (h) and PBBT-Me (i). j-l) Gate voltage applied (-0.7 V to 0 V, j) and 
the corresponding τOFF of the OECTs based on PBBT-H (k) and PBBT-Me (l). Rise time (tON, 

90%) and fall time (tOFF, 90%) of all the OECTs are shown in the figures. 
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Fig. S14. Contact angles of PBBT-H and PBBT-Me in air. 
 

 
Fig. S15. Transfer curves of the complementary OECTs: a) Transfer curves of PBBT-H-based 
OECT (p-type) and BBL-based OECT (n-type). b) Transfer curves of PBBT-Me-based OECT 
(p-type) and BBL-based OECT (n-type). 
 

 
Fig. S16. Summary of VDD-dependent voltage gain of complementary inverters based on OECT.  
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Fig. S17. OECT (a-d) and inverter (e-f) performance based on PBBT-H:BBL blend. The PBBT-
H:BBL blend (spin-coated from MSA with a mass ratio of 2:1 PBBT-H:BBL) shows typical 
ambipolar OECT characteristics. The corresponding complementary OECT inverters show 
high voltage gains of up to 67 V/V at VDD = 0.7 V. 
 
 

 
Fig. S18. Power consumption of the complementary inverters (PBBT-H/PBBT-Me based p-
type OECT and BBL based n-type OECT): Power consumption of the inverter based on PBBT-
H and BBL (a) and the inverter based on PBBT-Me and BBL (b) at various supply voltages. 
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Fig. S19. Transient response of the complementary inverters (PBBT-H/PBBT-Me based p-type 
OECT and BBL based n-type OECT): Transient response curves of the inverter based on 
PBBT-H and BBL (a) and the inverter based on PBBT-Me and BBL. τON and τOFF were 
evaluated through a first-order exponential fitting. 
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Fig. S20. Stability of the complementary inverters (PBBT-H/PBBT-Me based p-type OECT 
and BBL based n-type OECT): a) Gate voltage pulses applied to the inverters. b-c) Drain 
current response of the inverter based on PBBT-H and BBL (b) and the inverter based on PBBT-
Me and BBL. 
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Fig. S21. Spiking waveforms of the LIF neuron after working at Iin = 0.25 μA, 0.5 μA, 1 μA, 
1.5 μA, 4 μA, 6 μA for 0 h, 3 h, and 6.5 h. 
 
 
 
 

 
Fig. S22. Frequency (a) and Vfire,max (b) change of the LIF neuron at Iin = 0.25 μA, 1μA, 6 μA 
during 6.5 h of continuous operation. 
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Fig. S23. PBBT-Me: BBL-based OECNs. a) Schematic of LIF type spiking neuron, comprising 
PBBT-Me:BBL 2:1 blend ambipolar OECTs. b) Typical spiking behaviors of a LIF-neuron at 
Iin = 1 μA. c) Spiking frequency and Vfire,max of the LIF-neuron at different Iin. d) Spiking 
patterns at Iin = 1 μA for 0 h, 3 h, and 6.5 h. e) Spiking frequencies of the LIF-neuron change 
over time at Iin = 0.5 μA, 1 μA, 2 μA during 6.5 h of continuous operation. f) Evolution of the 
Vfire,max over time at Iin = 0.5 μA, 1 μA, 2 μA during 6.5 h of continuous operation. 
 
 

 
Fig. S24. Frequency (a) and Vfire,max (b) change of the LIF neuron at Iin = 0.5 μA, 1 μA, 2 μA 
during 6.5 h of continuous operation. 
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Fig. S25. PBBT-Me and BBL-based OECNs comprising solid hydrogels. a) Schematic of the 
LIF type spiking neuron, comprising both p-type and n-type accumulation-mode OECTs. b) 
Typical spiking behaviors of a LIF-neuron at Iin = 2 μA, based on PBBT-Me (PQ-10 hydrogel 
electrolyte5) and BBL OECTs (PSSNa hydrogel electrolyte). c) Spiking frequency and Vfire,max 
of the LIF-neuron at different Iin. d) Spiking patterns at Iin = 2 μA for 0 h, 3 h, and 6.5 h. e) 
Spiking frequencies of the LIF-neuron change over time at Iin = 0.25 μA, 1 μA, 6 μA during 
6.5 h of continuous operation. f) Evolution of the Vfire,max over time at Iin = 0.25 μA, 1 μA, 6 
μA during 6.5 h of continuous operation. 
 
 

 
Fig. S26. Frequency (a) and Vfire,max (b) change of the LIF neuron (PBBT-Me and BBL OECTs, 
hydrogel electrolytes, see Fig. S25) at Iin = 0.25 μA, 1 μA, 6 μA during 6.5 h of continuous 
operation. 
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Fig. S27. Spiking waveforms of the LIF neuron based on P(g42T-T) and BBL, after working 
continuously at Iin = 0.7 μA, 1 μA, 6 μA for 0 h, 3 h, and 6.5 h. For Iin < 0.7 μA, the neuron did 
not show spiking. 
 
 
 

 
Fig. S28. Frequency (a, c) and Vfire,max (b, d) change of LIF neuron based on P(g42T-T) and 
BBL, at Iin = 0.7 μA, 1μA, 6 μA during 6.5 h of continuous operation. 
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Table S1. Comparison of p-type, accumulation mode OECT stability under continuous 
cycling in air with aqueous solution electrolyte. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Compound Electrolyte VD VG Cycling 
time 

Current 
retention 

Reference 

P3gCPDT-1gT2 0.1 M NaCl -0.2 V 0 to -0.6 V 1 h 96% 

[6] 
P3gCPDT-1gT2 0.1 M NaCl -0.2 V 0 to -0.6 V 2 h 91% 
P3gCPDT-MeOT2 0.1 M NaCl -0.2 V 0 to -0.6 V 1 h 98% 
P3gCPDT-MeOT2 0.1 M NaCl -0.2 V 0 to -0.6 V 2 h 95% 

CB + BCF + 
p(g3T2-T)a 

0.1 M NaCl -0.6 V 0 to -0.6 V 2 h 46% [7] 

P(bgDPP-MeOT2) 0.1 M NaCl -0.4 V 0 to -0.4 V 30 minb 98.8% 
[8] P(bgDPP-MeOT2) 0.1 M NaCl -0.4 V 0 to -0.4 V 125 minb 89% 

p(g2T2-g4T2) 0.1 M NaCl -0.6 V 0 to -0.6 V 120 min 87% 
[9] p(g1T2-g5T2) 0.1 M NaCl -0.6 V 0 to -0.6 V 120 min 98% 

p(g0T2-g6T2) 0.1 M NaCl -0.6 V 0 to -0.6 V 120 min 98% 
p(gPyDPP-
MeOT2) 

0.1 M NaCl -0.4 V 0 to -0.5 V 25 min 124% b 

[10] p(gPyDPP-
MeOT2) 

0.1 M NaCl -0.4 V 0 to -0.6 V 25 min 96% b 

p(gPyDPP-
MeOT2) 

0.1 M NaCl -0.4 V 0 to -0.7 V 25 min 87% b 

PProDOT-DPP 0.1 M 
LiPF6 

-0.1 V 0 to -0.2 V 5 min 121% b 

[11] PProDOT-DPP 0.1 M 
LiPF6 

-0.1 V 0 to -0.4 V 5 min 87%b 

PProDOT-DPP 0.1 M 
LiPF6 

-0.1 V 0 to -0.6 V 5 min 68%b 

PBBT-H 0.1 M NaCl -0.6 V 0 to -0.6 V 4 h 90% This work 
PBBT-Me 0.1 M NaCl -0.6 V 0 to -0.6 V 4 h 92% 
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Table S2. Summary of VDD-dependent voltage gain of complementary inverters based on 
OECT. 
 

p-type OECT 
materials 

n-type OECT  
materials |VDD| (V) Gain Ref. 

2DPP-OD-TEG 2DPP-OD-TEG 1.4 50 [12] 

P3CPT BBL 

0.2 4 

[13] 
0.3 6 
0.4 8 
0.5 10 
0.6 11 

P(g42T-T) BBL 

0.1 2.7 

[14] 

0.2 9.4 
0.3 21 
0.4 35 
0.5 48 
0.6 69 
0.7 102 

PBBTL BBL 

0.3 7 

[1] 
0.4 11 
0.5 25 
0.6 42 

p(g2T-TT) PrC60MA 
0.7 62 

[15] 0.8 74 
0.9 82 

P(gTDPPT) P(gTDPP2FT) 0.8 26.8 [16] 

DPP-g2T IGZO 

0.3 47 

[17] 
0.4 73 
0.5 83 
0.6 91 
0.7 113 

PEDOT:PSS BBL 0.5 53 [18] 

Pg2T-TT PNDI2TEG-2Tz 
0.2 5 

[19] 0.4 14 
0.6 23.4 

P(g42T-T) BBL 

0.2 2.7 

[5] 

0.3 7 
0.4 12 
0.5 16 
0.6 20 
0.7 26 

P(g42T-TT) BBL:MWCNT 0.6 16 [20] 
gDPP-g2T Homo-gDPP 0.7 150 [21] 
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p(C4-T2-C0-EG) p(C4-T2-C0-EG) 
0.7 14 

[22] 0.75 17 
0.8 27 

PBBT-H BBL 

0.2 8 

This work 

0.3 19 
0.4 35 
0.5 50 
0.6 65 
0.7 61 

PBBT-Me BBL 

0.2 6 

This work 

0.3 21 
0.4 47 
0.5 82 
0.6 139 
0.7 194 
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