Supporting Information

Bloch-type magnetic skyrmions in two-dimensional lattice

Wenhui Du, Kaiying Dou, Zhonglin He, Ying Dai*, Baibiao Huang, Yandong Ma*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China

*Corresponding author: <u>daiy60@sina.com</u> (Y.D.); <u>yandong.ma@sdu.edu.cn</u> (Y.M.)

The magnetic parameters are obtained from DFT calculations. The DMI vector D_{ij} for the nearestneighboring Mn atoms can be expressed as $D_{ij} = d_{\parallel} u_{ij} + d_{\perp} z$ with u_{ij} representing the unit vector pointing from site *i* to *j* and *z* being the out-of-plane unit vector. To obtain the in-plane component d_{\parallel} , the left- and right-hand spin-spiral configurations are considered, as shown in **Fig. 2(a)**. The energy of two spin configurations represented by E_{L} and E_{R} can be written as:

$$E_{L} = E_{0} - \frac{3}{2}d_{\parallel}|S|^{2} \times 4$$
$$E_{R} = E_{0} + \frac{3}{2}d_{\parallel}|S|^{2} \times 4$$

As a result, the in-plane component d_{\parallel} can be obtained by $d_{\parallel} = \frac{E_R - E_L}{12}$.

To obtain J, λ and K_{MCA} , we consider four different spin configurations as displayed in **Fig. S4**. The energy of these different spin configurations can be written as:

$$E_{1} = E_{0} - 6J|S|^{2}$$

$$E_{2} = E_{0} + 2J|S|^{2}$$

$$E_{3} = E_{0} - 6J|S|^{2} - 6\lambda|S|^{2} - 2K_{MCA}|S|^{2}$$

$$E_{4} = E_{0} + 2J|S|^{2} + 2\lambda|S|^{2} - 2K_{MCA}|S|^{2}$$

Here, E_1 , E_2 , E_3 and E_4 represents the energy of x-FM, x-AFM, z-FM, and z-AFM configurations, respectively. Based on the above formula, magnetic parameters J, λ and K_{MCA} can be obtained.

Fig. S1. Phonon spectra of monolayer (a) $MnInP_2Te_6$ and (b) $MnTIP_2Te_6$. It can be seen that only a tiny negative frequency is observed around the Γ point, suggesting the dynamic stability of monolayer $MnXP_2Te_6$.

Fig. S2. Variations of total energies with time during the Ab initio molecular dynamics simulations for monolayer (a) $MnInP_2Te_6$ and (b) $MnTIP_2Te_6$ at 300 K and the corresponding snapshots taken from the end of the simulations. The slight free-energy fluctuations and well-defined structures indicate the thermal stability of monolayer $MnXP_2Te_6$.

Fig. S3. Spin charge densities of monolayer (a) MnInP₂Te₆ and (b) MnTlP₂Te₆.

Fig. S4. Four different magnetic configurations used to obtain the magnetic parameters J, λ , and K_{MCA} in monolayer MnXP₂Te₆.

Fig. S5. Average magnetization (M) per formula as a function of temperature (T) of monolayer (a) MnInP₂Te₆ and (b) MnTIP₂Te₆ from Monte-Carlo simulations.

Fig. S6. Spin-polarized band structures of monolayer (a) $MnInP_2Te_6$ and (b) $MnTIP_2Te_6$ with SOC. The red and blue lines in (a, b) correspond to spin-up and spin-down states, respectively. The Fermi level is set to 0 eV.

Fig. S7. Spin texture of monolayer $MnTlP_2Te_6$ under in-plane magnetic field of 19 mT. It is superimposed by in-plane cycloidal structure and small out-of-plane waved spin pattern.

Fig. S8. Magnetic anisotropy energy (MAE) per unit_cell of monolayer $MnXP_2Te_6$ as a function of strain. MAE is defined as the energy difference between the systems with magnetization axis along in-plane ($^{E}in - plane$) and out-of-plane ($^{E}out - of - plane$) directions.

Table S1. Lattice constant a (Å), magnetic parameters [exchange coupling J (in meV), anisotropic symmetric exchange λ (in meV), magnetocrystalline anisotropy K_{MCA} (in meV), magnetic shape anisotropy K_{MSA} (in meV), single ion anisotropy K (in meV), in-plane DMI d_{\parallel} (in meV)] and magnetic moment m ($\mu_{\rm B}$) on Mn atom for monolayer MnXP₂Te₆.

	а	J	λ	K _{MCA}	K _{MSA}	K	d _{II}	т
MnInP ₂ Te ₆	7.13	10.108	-0.048	1.015	-0.026	0.989	2.873	4.191
MnTlP ₂ Te ₆	7.20	18.168	-0.955	-0.064	-0.025	-0.089	5.791	4.173

Table S2. Lattice constants a (Å), magnetic parameters [exchange coupling J (in meV), anisotropic symmetric exchange λ (in meV), magnetocrystalline anisotropy K_{MCA} (in meV), magnetic shape anisotropy K_{MSA} (in meV), single ion anisotropy K (in meV), in-plane DMI d_{\parallel} (in meV)] and

MnInP ₂ Te ₆	а	J	λ	K _{MCA}	K _{MSA}	K	d _{II}	m
-3%	6.92	5.197	0.205	-0.567	-0.028	-0.595	1.409	4.254
-2%	6.99	5.965	0.340	-0.114	-0.027	-0.141	1.746	4.232
-1%	7.06	8.169	0.342	0.739	-0.027	0.712	2.293	4.207
0%	7.13	10.108	-0.048	1.015	-0.026	0.989	2.873	4.191
1%	7.20	11.475	-0.510	1.519	-0.025	1.494	3.653	4.178
2%	7.27	12.622	-0.946	2.109	-0.024	2.085	4.600	4.175
3%	7.34	13.321	-1.202	1.881	-0.024	1.857	5.517	4.172

magnetic moments $m(\mu_B)$ on Mn atom for monolayer MnInP₂Te₆ under various strains.

Table S3. Lattice constants a (Å), magnetic parameters [exchange coupling J (in meV), anisotropic symmetric exchange λ (in meV), magnetocrystalline anisotropy K_{MCA} (in meV), magnetic shape anisotropy K_{MSA} (in meV), single ion anisotropy K (in meV), in-plane DMI $d \parallel$ (in meV)] and magnetic moments m ($\mu_{\rm B}$) on Mn atom for monolayer MnTlP₂Te₆ under various strains.

MnTlP ₂ Te ₆	а	J	λ	K _{MCA}	K _{MSA}	K	d_{\parallel}	т
-3%	6.99	19.700	-0.485	-0.416	-0.027	-0.443	4.095	4.184
-2%	7.06	19.600	-0.688	-0.178	-0.027	-0.205	4.753	4.177
-1%	7.13	19.111	-0.850	-0.053	-0.026	-0.079	5.362	4.172
0%	7.20	18.168	-0.955	-0.064	-0.025	-0.089	5.791	4.173
1%	7.27	17.056	-1.050	-0.114	-0.024	-0.138	6.035	4.174
2%	7.35	15.969	-1.154	-0.137	-0.024	-0.161	6.106	4.180
3%	7.42	14.909	-1.248	-0.126	-0.023	-0.149	6.088	4.189