Supporting Information

Bloch-type magnetic skyrmions in two-dimensional lattice

Wenhui Du, Kaiying Dou, Zhonglin He, Ying Dai*, Baibiao Huang, Yandong Ma*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China

*Corresponding author: daiy60@sina.com (Y.D.); vandong.ma@sdu.edu.cn (Y.M.)
Note 1: Calculation details of magnetic parameters in spin Hamiltonian

The magnetic parameters are obtained from DFT calculations. The DMI vector D_{ij} for the nearest-neighboring Mn atoms can be expressed as $D_{ij} = d_\parallel u_{ij} + d_\perp z$ with u_{ij} representing the unit vector pointing from site i to j and z being the out-of-plane unit vector. To obtain the in-plane component d_\parallel, the left- and right-hand spin-spiral configurations are considered, as shown in Fig. 2(a). The energy of two spin configurations represented by E_L and E_R can be written as:

$$E_L = E_0 - \frac{3}{2}d_\parallel |S|^2 \times 4$$
$$E_R = E_0 + \frac{3}{2}d_\parallel |S|^2 \times 4$$

As a result, the in-plane component d_\parallel can be obtained by

$$d_\parallel = \frac{E_R - E_L}{12}.$$

To obtain J, λ and K_{MCA}, we consider four different spin configurations as displayed in Fig. S4. The energy of these different spin configurations can be written as:

$$E_1 = E_0 - 6J|S|^2$$
$$E_2 = E_0 + 2J|S|^2$$
$$E_3 = E_0 - 6J|S|^2 - 6\lambda|S|^2 - 2K_{MCA}|S|^2$$
$$E_4 = E_0 + 2J|S|^2 + 2\lambda|S|^2 - 2K_{MCA}|S|^2$$

Here, E_1, E_2, E_3 and E_4 represents the energy of x-FM, x-AFM, z-FM, and z-AFM configurations, respectively. Based on the above formula, magnetic parameters J, λ and K_{MCA} can be obtained.
Fig. S1. Phonon spectra of monolayer (a) MnInP$_2$Te$_6$ and (b) MnTlP$_2$Te$_6$. It can be seen that only a tiny negative frequency is observed around the Γ point, suggesting the dynamic stability of monolayer MnXP$_2$Te$_6$.

Fig. S2. Variations of total energies with time during the Ab initio molecular dynamics simulations for monolayer (a) MnInP$_2$Te$_6$ and (b) MnTlP$_2$Te$_6$ at 300 K and the corresponding snapshots taken from the end of the simulations. The slight free-energy fluctuations and well-defined structures indicate the thermal stability of monolayer MnXP$_2$Te$_6$.

Fig. S3. Spin charge densities of monolayer (a) MnInP$_2$Te$_6$ and (b) MnTlP$_2$Te$_6$.
Fig. S4. Four different magnetic configurations used to obtain the magnetic parameters J, λ, and K_{MCA} in monolayer MnXP$_2$Te$_6$.

Fig. S5. Average magnetization (M) per formula as a function of temperature (T) of monolayer (a) MnInP$_2$Te$_6$ and (b) MnTlP$_2$Te$_6$ from Monte-Carlo simulations.

Fig. S6. Spin-polarized band structures of monolayer (a) MnInP$_2$Te$_6$ and (b) MnTlP$_2$Te$_6$ with SOC. The red and blue lines in (a, b) correspond to spin-up and spin-down states, respectively. The Fermi level is set to 0 eV.
Fig. S7. Spin texture of monolayer MnTlP$_2$Te$_6$ under in-plane magnetic field of 19 mT. It is superimposed by in-plane cycloidal structure and small out-of-plane waved spin pattern.

![Image](image_url)

Fig. S8. Magnetic anisotropy energy (MAE) per unit cell of monolayer MnXP$_2$Te$_6$ as a function of strain. MAE is defined as the energy difference between the systems with magnetization axis along in-plane ($E_{\text{in-plane}}$) and out-of-plane ($E_{\text{out-of-plane}}$) directions.

![Image](image_url)

Table S1. Lattice constant a (Å), magnetic parameters [exchange coupling J (in meV), anisotropic symmetric exchange λ (in meV), magnetocrystalline anisotropy K_{MCA} (in meV), magnetic shape anisotropy K_{MSA} (in meV), single ion anisotropy K (in meV), in-plane DMI d_{\parallel} (in meV)] and magnetic moment m (μ_B) on Mn atom for monolayer MnXP$_2$Te$_6$.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>J</th>
<th>λ</th>
<th>K_{MCA}</th>
<th>K_{MSA}</th>
<th>K</th>
<th>d_{\parallel}</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnInP$_2$Te$_6$</td>
<td>7.13</td>
<td>10.108</td>
<td>-0.048</td>
<td>1.015</td>
<td>-0.026</td>
<td>0.989</td>
<td>2.873</td>
<td>4.191</td>
</tr>
<tr>
<td>MnTlP$_2$Te$_6$</td>
<td>7.20</td>
<td>18.168</td>
<td>-0.955</td>
<td>-0.064</td>
<td>-0.025</td>
<td>-0.089</td>
<td>5.791</td>
<td>4.173</td>
</tr>
</tbody>
</table>

Table S2. Lattice constants a (Å), magnetic parameters [exchange coupling J (in meV), anisotropic symmetric exchange λ (in meV), magnetocrystalline anisotropy K_{MCA} (in meV), magnetic shape anisotropy K_{MSA} (in meV), single ion anisotropy K (in meV), in-plane DMI d_{\parallel} (in meV)] and
magnetic moments m (μ_B) on Mn atom for monolayer MnInP$_2$Te$_6$ under various strains.

<table>
<thead>
<tr>
<th>MnInP$_2$Te$_6$</th>
<th>a</th>
<th>J</th>
<th>λ</th>
<th>K_{MCA}</th>
<th>K_{MSA}</th>
<th>K</th>
<th>d_\parallel</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3%</td>
<td>6.92</td>
<td>5.197</td>
<td>0.205</td>
<td>-0.567</td>
<td>-0.028</td>
<td>-0.595</td>
<td>1.409</td>
<td>4.254</td>
</tr>
<tr>
<td>-2%</td>
<td>6.99</td>
<td>5.965</td>
<td>0.340</td>
<td>-0.114</td>
<td>-0.027</td>
<td>-0.141</td>
<td>1.746</td>
<td>4.232</td>
</tr>
<tr>
<td>-1%</td>
<td>7.06</td>
<td>8.169</td>
<td>0.342</td>
<td>0.739</td>
<td>-0.027</td>
<td>0.712</td>
<td>2.293</td>
<td>4.027</td>
</tr>
<tr>
<td>0%</td>
<td>7.13</td>
<td>10.108</td>
<td>-0.048</td>
<td>1.015</td>
<td>-0.026</td>
<td>0.989</td>
<td>2.873</td>
<td>4.191</td>
</tr>
<tr>
<td>1%</td>
<td>7.20</td>
<td>11.475</td>
<td>-0.510</td>
<td>1.519</td>
<td>-0.025</td>
<td>1.494</td>
<td>3.653</td>
<td>4.178</td>
</tr>
<tr>
<td>2%</td>
<td>7.27</td>
<td>12.622</td>
<td>-0.946</td>
<td>2.109</td>
<td>-0.024</td>
<td>2.085</td>
<td>4.600</td>
<td>4.175</td>
</tr>
<tr>
<td>3%</td>
<td>7.34</td>
<td>13.321</td>
<td>-1.202</td>
<td>1.881</td>
<td>-0.024</td>
<td>1.857</td>
<td>5.517</td>
<td>4.172</td>
</tr>
</tbody>
</table>

Table S3. Lattice constants a (Å), magnetic parameters [exchange coupling J (in meV), anisotropic symmetric exchange λ (in meV), magnetocrystalline anisotropy K_{MCA} (in meV), magnetic shape anisotropy K_{MSA} (in meV), single ion anisotropy K (in meV), in-plane DMI d_\parallel (in meV)] and magnetic moments m (μ_B) on Mn atom for monolayer MnTlP$_2$Te$_6$ under various strains.

<table>
<thead>
<tr>
<th>MnTlP$_2$Te$_6$</th>
<th>a</th>
<th>J</th>
<th>λ</th>
<th>K_{MCA}</th>
<th>K_{MSA}</th>
<th>K</th>
<th>d_\parallel</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3%</td>
<td>6.99</td>
<td>19.700</td>
<td>-0.485</td>
<td>-0.416</td>
<td>-0.027</td>
<td>-0.443</td>
<td>4.095</td>
<td>4.184</td>
</tr>
<tr>
<td>-2%</td>
<td>7.06</td>
<td>19.600</td>
<td>-0.688</td>
<td>-0.178</td>
<td>-0.027</td>
<td>-0.205</td>
<td>4.753</td>
<td>4.177</td>
</tr>
<tr>
<td>-1%</td>
<td>7.13</td>
<td>19.111</td>
<td>-0.850</td>
<td>-0.053</td>
<td>-0.026</td>
<td>-0.079</td>
<td>5.362</td>
<td>4.172</td>
</tr>
<tr>
<td>0%</td>
<td>7.20</td>
<td>18.168</td>
<td>-0.955</td>
<td>-0.064</td>
<td>-0.025</td>
<td>-0.089</td>
<td>5.791</td>
<td>4.173</td>
</tr>
<tr>
<td>1%</td>
<td>7.27</td>
<td>17.056</td>
<td>-1.050</td>
<td>-0.114</td>
<td>-0.024</td>
<td>-0.138</td>
<td>6.035</td>
<td>4.174</td>
</tr>
<tr>
<td>2%</td>
<td>7.35</td>
<td>15.969</td>
<td>-1.154</td>
<td>-0.137</td>
<td>-0.024</td>
<td>-0.161</td>
<td>6.106</td>
<td>4.180</td>
</tr>
<tr>
<td>3%</td>
<td>7.42</td>
<td>14.909</td>
<td>-1.248</td>
<td>-0.126</td>
<td>-0.023</td>
<td>-0.149</td>
<td>6.088</td>
<td>4.189</td>
</tr>
</tbody>
</table>