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1 Eshelby’s tensor (Mechanical Property) for finite cylinder and ellipsoidal inclusion

Franciosi et al.1,2 derived the Eshelby’s tensor for a flat cylinder inclusion by using both volume 

averaging and radon transform formulation of the elastostatic green’s function. This tensor is used 

to either model stress/strain concentration behavior of monolayer or multilayer MXenes in this 

study which are embedded in a reference matrix λ which could be either the interphase (  or 𝜆 = 𝑖)

the polymer matrix ( ) of MXPCs.𝜆 = 𝑚

 

𝑆𝜆 = {
3𝐴
8

Ψ + 𝜓
𝐴
8

Ψ
𝐴
2

𝛽 +
1
2

𝜓

𝐴
8

Ψ
3𝐴
8

Ψ + 𝜙
𝐴
2

𝛽 +
1
2

𝜓

𝐴
2

𝛽 +
1
2

𝜓
𝐴
2

𝛽 +
1
2

𝜓 𝐴Φ + 2𝜙

0

0

𝐴𝜓𝜙 + (0.5𝜓 + 𝜙)
𝐴𝜓𝜙 + (0.5𝜓 + 𝜙)

𝐴
4

Ψ

 }:𝐶
S1

 

𝐶 =
1

(1 ‒ 2𝜈𝜆)
 {(1 ‒ 𝜈𝜆) 𝜈𝜆 𝜈𝜆

𝜈𝜆 (1 ‒ 𝜈𝜆) 𝜈𝜆
𝜈𝜆 𝜈𝜆 (1 ‒ 𝜈𝜆)

0

0
0.5(1 ‒ 2𝜈𝜆)

0.5(1 ‒ 2𝜈𝜆)
0.5(1 ‒ 2𝜈𝜆)

 } S2

 𝐴 = (1 ‒ 𝜈𝜆) ‒ 1 S3

Based on Equation S1and S2, the 4th order Eshelby’s tensor is dependent on the Poisson’s ratio (

) of the reference matrix medium ( ) of the flat cylinder inclusion. This Poisson’s ratio could be 𝜈𝜆 𝜆

redefined as the Poisson’s ratio of MXene ( ), interphase ( ), or the polymer phase ( ) in IMT 𝜈Γ 𝜈𝑖 𝜈𝑚

model. From radon transformation and volume integral computation, the shape functions (i.e., 

 and ) of the finite cylinder Eshelby’s tensor are derived and summarized in Equation. S4 Ψ,𝜓,Φ, 𝛽  𝜙

to S8. Furthermore, the following shape functions are also dependent on the thickness to diameter 

ratio ( ) of the finite cylinder inclusion. In the first homogenization step of the micromechanics 𝜁

IMT model, this  is assigned to the reciprocal aspect ratio ( ) of monolayer MXene. 𝜁 𝜁 = 𝛼 ‒ 1

Alternately, in the second homogenization step of IMT model,  becomes the reciprocal aspect 𝜁

ratio of the equivalent medium ( ). To verify the validity of these shape functions, we 𝜁 = 𝛽 ‒ 1

ensured that the plotted shape functions in relation to  (Figure S1) is identical to those shown in 𝜁



the original work.2 Based on Figure S1, the majority of MXene sheets embedded in MXPCs have 

size ratio ( ) that are below 1/500. Hence, when  is small, the Eshelby’s tensor will represent 𝜁 𝜁

MXenes as flat cylinder inclusions in the composite.
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In Equation S4 to S8, the coefficient values of a1, a2, a3, a4, and a5 are provided in Table S1. 

Moreover, the shorthand terms (i.e., I, II, III, and IV) introduced in these equations are also 

dependent on . These shorthanded terms are all listed from Equation S9 to S12.  𝜁
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Table S1: Coefficient values of a1 to a5 define the shape function of finite cylinder Eshelby’s tensor.

a1 a2 a3 a4 a5
1 + 2/6 2 + 2/2 1 + 2/2 2/6 0.729



Figure S1. The weight fraction that results from the radon transforms volume integral of circular cylinder 
for finding the components of Eshelby’s tensor. In our study, we will mostly use the weight functions left 
to the green line which is the majority aspect ratios of our MXene clusters.

2 Flat/finite cylinder Eshelby’s tensor (Functional Property)

To model the thermal and dielectric behaviors of MXene polymer composites, the field 

polarization by MXene inclusions can be evaluated with the help of 2nd order Eshelby’s tensor for 

finite cylinder inclusion.1,2 This 2nd order Eshelby’s tensor in Equation S13 is used in IMT model 

to predict the functional properties of MXPCs based on the aspect ratios of embedded single or 

multilayer MXenes. In the first Mori-Tanaka homogenization step, the following 2nd order 

Eshelby’s tensor is dependent on the aspect ratio of monolayer MXene ( ) of the MXene 𝜁 = 𝛼 ‒ 1

cluster. For the final homogenization step using the interpolated Mori-Tanaka, the same Eshelby’s 

tensor will be used but with the aspect ratio replace with the aspect ratio of the considered MXene 

cluster ( ).𝜁 = 𝛽 ‒ 1
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3  Percolation volume fraction of MXPCs

The first row and column element (i.e., ) of Equation S14 and can be used to evaluate the 𝑆11
Ω

percolation volume fraction (f*) of MXPCs with randomly oriented single or multilayer MXenes 

of a prescribed aspect ratio ( ) by using Equation 16. The following relationship between f* and 𝜁 ‒ 1

 is illustrated in Figure S2. As the diameter to height ratio of multilayer MXene ( ) 𝜁 ‒ 1 𝜁 ‒ 1 = 𝛽

increases from 1 to 103, the predicted percolation threshold decreases from 0.33 to approximately 

close to zero. 

Figure S2. The predicted percolation threshold volume fraction (f*) as a function of the aspect ratio of 
multilayer MXenes ( ). 𝜁 ‒ 1 = 𝛽

4  Orientation averaging 

When multilayer MXene sheets with high aspect ratios are randomly dispersed in the composite, 

the effective mechanical and functional properties of the composite will be approximately 

isotropic. For example, the elastic modulus of the composite in each orthogonal direction (i.e., x, 

y, and z in Cartesian space) are approximately equivalent to each other. This is because the 



orientation of the dispersed MXene inclusions (i.e., flat cylinders) are assumed to be uniformly 

distributed with respect to each Euler coordinate angles (  and ). To consider random 𝜙,𝛾,  𝜓

orientation of MXene inclusions in IMT model, the orientation averaging operator (Equation S16) 

is used.3 Equation S16 is the orientation averaging operator for a given 4th order depolarization 

tensor (M) which enables IMT model to compute the effective isotropic mechanical property of 

MXPCs. The components of this six-by-six matrix (M) and the orientation averaged matrix <M> 

are represented as index notation in Equation S17 and S18, respectively. Equation S19 lists the 

components for the transformation tensor which allows IMT model to account the mechanical 

reinforcement contributed by individual MXenes embedded at different orientations in the 

composite.

The property tensor for thermal and dielectric properties of MXPCs are 2nd order tensors. As a 

result, the orientation averaging operator for IMT model should be compatible for accommodating 

the orientation averaging of 2nd order tensor (Equation S20). The components of now 3 by 3 

depolarization matrix (M) and the resultant orientation averaged matrix (<M>) are listed in 

Equation S17. Both Equation S17 and S20 are solved using standard rectangular numerical 

integration established in MATLAB.
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5 Interchangeability of property in IMT model 

Table S2 shows that the generalized property tensor (Lλ) of polymer matrix (λ=m), intercalant 

(λ=i), and MXene (λ=Γ) in the interpolated Mori-Tanaka model formulation can be interchanged 

into stiffness, thermal conductivity, and dielectric tensors.

Table S2. Conversion of general property tensor into mechanical and functional property matrix. is a 𝐼3 × 3 
three-by-three (2nd order) identity matrix or otherwise (I) will be a six-by-six identity matrix.

Phase Mechanical 
Stiffness
Lλ = Cλ
(6 × 6)

Thermal Conductivity

Lλ = Κ𝜆𝐼3 × 3

(3 × 3)

Relative Permittivity

Lλ = 𝜀𝜆𝐼3 × 3

(3 × 3)Polymer (λ=m) Cm Κ𝑚𝐼3 × 3 𝜀𝑚𝐼3 × 3

Intercalant (λ=i) Ci Κ𝑖𝐼
3 × 3 𝜀𝑖𝐼

3 × 3

MXene (λ=Γ) CΓ ΚΓ𝐼3 × 3 𝜀Γ𝐼3 × 3

6 Input material properties for IMT model and finite element method

Table S3. Input mechanical and functional properties of constituents in various MXene composites 
retrieved from literatures.

Phase Elastic Modulus 
(MPa)

Poisson’s 
ratio

Thermal 
conductivity
(W∙m-1∙K-1)

Dielectric 
Constant (DC)

Ti3C2Tx MXene 
(filler) 9,000 to 70,000 4 0.49 55.85 1 × 107

PDMS (Sylgard 
184) 1.5 6 0.49 0.27 2.7

7 Comparison of IMT model with density functional theory calculations for thermal 

conductivity of MXene in epoxy composite.

Table S4. Comparing the thermal conductivity of MXene in epoxy composite predicted by IMT model 
with those by Wang et al.[7]. To match the comparison condition, 5 m diameter monolayer MXene at 1% 𝜇
volume fraction are assumed to be randomly dispersed in the following epoxy composite and the epoxy 
has chosen thermal conductivity of 0.2 W·m-1·K-1.



Type of 
MXene

MXene’s input thermal 
conductivity (W·m-1·K-1) 7] Our work (W·m-1·K-1) Work of Wang et al.7 

(W·m-1·K-1)

Ti3C2 50.8 0.64 ~ 0.5

Ti3C2F2 92.94 0.83 ~ 0.7

Ti3C2O2 140.25 1.01 ~ 0.95

8 Resistance Function

Figure S3 shows the resistance function behaviors when the number of layers, lateral size, and 

volume fraction of MXenes in MXPCs are changed. This plot is created based on Equation 18 

where it is assumed that  is equal to  at a given considered aspect ratio ( ) of multilayer 𝑓' 𝑓 ∗ 𝜁 ‒ 1 = 𝛽

MXene. The following resistance function behaviors represent the change in the interphase 

property when the volume fraction of MXene fillers increases and is sufficient to form percolation 

microstructure. As a result, this resistance function will influence the predicted thermal 

conductivity and dielectric properties of MXene polymer composites when different sizes and 

layers of MXene fillers are considered. 

Figure S3. The resistance function as a function of volume fraction due to changes in size (a) and layers 
(n) of multilayer MXenes. In all this illustrated resistance functions, the resistance decomposition rate ( ) 𝛾𝑜

is chosen as 0.02. 



9 Boundary conditions in FEM

9.1 Mechanical property evaluation

To evalute the longitudinal Young’s modulus of RVE, a uniform normal strain ( ) is applied on 𝑒𝑥

one surface normal to the x-direction (x=b) with the opposite surface (x=0) set to zero normal 

displacement (Figure 4). Simultaneously, the surface boundaries of RVE at y=0 and z=0 will have 

zero normal displacement while the remainder faces are allowed to freely deform due to Poisson’s 

effect. The obtained reaction force on the fixed surface at x=0 is normalized with the surface area 

of xz plane (h·b) to evaluate the applied longitudinal stress (σx). By taking the ratio of σx and ex, 

the longitudinal elastic modulus can be evaluated. To find the transverse (i.e., z-direction) Young’s 

modulus of RVE, a uniform normal strain (ez) is alternately applied on the surface normal to z-

direction (z=h) while the opposite surface (z=0) is constrained to zero normal displacement. Now, 

the surface boundaries at x=0 and y=0 of RVE will have zero normal displacement while other 

boundaries are left unconstrained. The retrieved reaction force at the constrained surface (z=0) 

normal to applied strain is divided by the surface area of xy plane (b2) to evaluate the applied 

transverse stress (σz). By taking the ratio of σz and ez, the transverse elastic modulus of the RVE is 

computed.

9.2 Thermal and dielectric property evaluation

The longitudinal thermal conductivity ( ) of RVE can be evaluated by applying temperature 𝜅𝑥
𝑃

difference ( T) between the surface boundaries at x=0 and x=b while other surface boundaries are ∆

assumed perfectly insulated (Figure 4b). Then, the total reaction heat flux in x-direction is obtained 

and normalized with the surface area of xz plane (h·b) to recover the heat flux density (qx) in x-

direction.  of the representative volume element can be evaluated using the anisotropic Fourier’s 𝜅𝑥
𝑃

law in Equation S21. Similarly, the transverse thermal conductivity ( ) is evaluated by applying 𝜅𝑧
𝑃

temperature gradient ( T) between the surface boundaries at z=0 and z=L while other surface ∆

boundaries to have zero heat flux. Once again, the total reaction heat flux propagating in the z-

direction is retrieved and divided by surface area of xy plane (b2) to derive the heat flux density 

(qz). By following Equation S22, the transverse thermal conductivity ( ) of the RVE is retrieved.𝜅𝑧
𝑃

𝜅𝑥
𝑃 = 𝑞𝑥( 𝑏

∆𝑇) S21

𝜅𝑧
𝑃 = 𝑞𝑧( ℎ

∆𝑇) S22



Determining the longitudinal ( ) and transverse ( ) dielectric property is identical to the steps 𝜀𝑥
𝑃 𝜀𝑧

𝑃

taken for finding the anisotropic thermal conductivity of RVE. The main difference lies in 

replacing the notion of temperature difference, heat flux, and heat flux density as applied potential 

field ( V), electric flux, and electric flux density. This conversion is possible because the linear ∆

constitutive laws of transport properties have similar mathematical form. Hence, the formulae in 

Equation S21 and S22 can be converted to Equation S23 and S24, respectively. In Equation S23, 

the electric flux density (Dx) in x-direction needs to be obtained from FEM to evaluate . 𝜀𝑥
𝑃

Similarly, in Equation S24, the electric flux density (Dz) in z-direction is retrived from FEM to 

find . 𝜀𝑧
𝑃

𝜀𝑥
𝑃 = 𝐷𝑥( 𝑏

∆𝑉) S23

𝜀𝑧
𝑃 = 𝐷𝑧( ℎ

∆𝑉) S24

10 Multilayer MXene in hard or soft polymer matrix

Several atomic force microscopy experiments had shown that the measured elastic modulus of 

Ti3C2 Tx can range between 9 GPa to 70 GPa while density functional theory simulation had shown 

that the elastic modulus of Ti3C2Tx ranges several hundreds of GPa.4 Hence, it is important to 

investigate if the following range of measured elastic modulus (9 GPa – 70 GPa) of MXenes can 

influence the effective stiffness of MXPCs. 

Figure S4. The effects of variation in elastic modulus and multilayer structure of MXene fillers on the 
predicted elastic modulus of (a) MXene-Sylgard 184 and (b) MXene-Epoxy composite. Both results 



assume the size ratio of embedded MXenes are fixed at α = 500. Both the predicted elastic modulus of 
MXPCs in (a) and (b) are respectively normalized by the elastic modulus of unfilled Sylgard 184 and 
Epoxy polymer.

In Figure S4a, the predicted stiffness of MXene-Sylgard 184 when MXenes’ elastic modulus is 

low (9 GPa) or high (70 GPa) are approximately similar. In addition, this mechanical behavior 

seems to occur regardless of the number of layers that are considered in the embedded MXenes 

despite all these fillers having the same lateral size (a = 500). On the contrary, IMT model 

demonstrates that when the considered elastic modulus of MXene is high (70 GPa), the predicted 

stiffness of MXene in Epoxy composite will be larger than the predicted stiffness of the same 

Epoxy composite that has low elastic modulus (9 GPa) MXenes (Figure S4b). Hence, this result 

shows that the predicted elastic modulus of MXene-Epoxy composite is less affected (negligible 

stiffness suppression effects) by the number of layers present in the embedded MXenes. Based on 

these comparisons, it can also be concurred that when the polymer matrix of MXPCs is stiff 

(Em~3.5 GPa) such as epoxy, the stiffness of MXene fillers can more dominantly influence the 

final elastic modulus of MXPCs rather than the multilayer structure of MXenes. On the other hand, 

when the elastic modulus (Em~1.5 MPa) of the polymer matrix (Sylgard 184) is low, the effective 

stiffness of MXPCs becomes more affected by the multilayer structure rather than the stiffness of 

the MXene fillers. 
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