SUPPLEMENTARY INFORMATION

Nanoarchitected graphene/copper oxide nanoparticles/MoS₂ ternary thin films as highly efficient electrodes for aqueous sodium-ion battery

Maria K. Ramos^a, Gustavo Martins^a, Luiz H. Marcolino-Junior^a, Márcio F. Bergamini^a, Marcela M. Oliveira^b, Aldo J. G. Zarbin^a*

^aDepartment of Chemistry, Federal University of Paraná (UFPR). CP 19032, 81531-980, Curitiba, PR, Brazil.

^bDepartment of Chemistry and Biology, Technological Federal University of Paraná (UTFPR), Curitiba, PR, Brazil

Fig. S1: UV-Vis (a) and Raman (λ = 532 nm) (b) spectra of the control samples MoS₂ (black), rGO (red) and rGO/Cu_xO (blue).

Sample	Band A	Band B	Band C	Band D	Band π-π*
	(nm)	(nm)	(nm)	(nm)	(nm)
MoS2	673	621	453	392	-
rGO	-	-	-	-	259
rGO/Cu _x O	-	-	-	-	270
rGO/MoS ₂ -LbL	673	621	453	392	258
rGO/Cu _x O/MoS ₂ -LbL	673	621	453	392	264
rGO/MoS ₂ -mixing	673	621	461	390	261
rGO/Cu _x O/MoS ₂ -mixing	673	621	462	390	267
rGO/MoS ₂ -in situ	673	621	466	388	262
rGO/Cu _x O/MoS ₂ -in situ	673	621	477	389	269

Table S1: The main bands observed by UV-Vis spectroscopy of the thin films deposited over planar quartz substrates.

Fig. S2: Raman spectra (λ = 532 nm) of the different nanocomposite set formed with rGO (a-b) and rGO/Cu_xO (c-d).

Table S2: Raman bands and I_D/I_G ratio (calculated from the Lorentz deconvolution of the Raman spectra) observed in the thin film samples.

	D	G	D'	MoS ₂	MoS ₂	I_D/I_G
Sample	Band	Band	Band	A _{1g}	$\mathbf{E}_{\mathbf{g}}$	
	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	Band	Band	
				(cm ⁻¹)	(cm ⁻¹)	
MoS ₂	-	-	-	412	384	-
rGO	1346	1591	-	-	-	1.10 ± 0.04
rGO/Cu _x O	1352	1588	1620	-	-	1.58 ± 0.10
rGO/MoS ₂ -LbL	1346	1591	-	412	384	1.16 ± 0.08
rGO/Cu _x O/MoS ₂ -LbL	1351	1585	1618	411	384	1.74 ± 0.08
rGO/MoS ₂ -mixing	1342	1590	-	411	384	1.17 ± 0.14
rGO/Cu _x O/MoS ₂ -mixing	1351	1589	1621	412	384	1.88 ± 0.22
rGO/MoS ₂ -in situ	1347	1592	-	411	385	1.17 ± 0.03
rGO/Cu _x O/MoS ₂ -in situ	1352	1588	1616	412	384	$1.81 \pm$
						0.17

Fig. S3: X-ray diffraction patterns profile of thin films obtained using a low-angle mode thin film accessory (a-b); X-ray diffraction patterns profile of $rGO/Cu_xO/MoS_2$ -in situ thin film obtained in a standard analysis. The colored traces in (c) corresponds to the peaks attributed to Cu₂O (JCPDS 74-1230) and CuO (JCPDS 72-0629).

Fig. S4: SEM images of MoS_2 (a-c), rGO (d-f) and rGO/Cu_xO (g-i) thin-films.

Fig. S5: SEM images of rGO/MoS₂-LbL (a-c) and rGO/Cu_xO/MoS₂-LbL (d-f) thin-films.

Fig. S6: SEM images of rGO/MoS₂-mixing (a-c) and rGO/Cu_xO/MoS₂-mixing (d-f) thin-films.

Fig. S7: SEM images of rGO/MoS_2 -in situ (a-c) and $rGO/Cu_xO/MoS_2$ -in situ (d-f) thin-films.

Fig. S8: SEM images of the $rGO/Cu_xO/MoS_2$ -in situ sample, collected with secondary electron detector (left) and backscattered electrons (right).

Fig. S9: Energy dispersive spectroscopy spectrums for rGO (a) and rGO/Cu_xO (b) set.

Fig. S10: Transmission microscopy and diffraction images of the rGO sample.

Fig. S11: Transmission microscopy images of the MoS₂ sample.

Fig. S12: Transmission microscopy image of MoS_2 sample.

Fig. S13: Transmission microscopy images of the rGO/MoS₂ sample.

Fig. S14: Transmission microscopy images of the rGO/Cu_xO sample.

Fig. S15: High-resolution transmission electron microscopy (HRTEM) of rGO/Cu_xO images and FFT analysis.

Fig. S16: Transmission electron microscopy images of the $rGO/Cu_xO/MoS_2$ -in situ sample.

Fig. S17: Cyclic voltammograms at scan rates ranging from 5 mV s⁻¹ to 50 mV s⁻¹ of samples MoS_2 (a); rGO (b); rGO/Cu_xO (c); rGO/MoS₂-LbL (d); rGO/MoS₂-mixing (e); rGO/MoS₂-in situ (f); rGO/Cu_xO/MoS₂-LbL (g); rGO/Cu_xO/MoS₂-mixing (h); and rGO/Cu_xO/MoS₂-in situ (i); obtained in the range of -0.2 to 0.4 V in 0.1 mol L⁻¹ NaCl.

Fig. S18: Cyclic voltammetry profiles of rGO/Cu_xO thin film in different electrolytes (aqueous solution, 0.1 mol L⁻¹) at 5 mV s⁻¹ and -0.2 to 0.4 V range.

Fig. S19: Nyquist plot of the thin films. Electrolyte: aqueous solution of NaCl 0.1 mol L^{-1} at -0.1 V.

Fig. S20: Cyclic voltammetry of MoS_2 , rGO/Cu_xO and rGO/Cu_xO/MoS₂-in situ films obtained in electrochemical quartz crystal microbalance. Films deposited over gold/quartz electrode, aqueous NaCl 0.1 mol L⁻¹ solution as electrolyte.

Fig. S21: Galvanostatic charge/discharge curves obtained at different currents (0.1, 0.25, 0.5, 0.75, 1 and 2 A g⁻¹) of samples MoS₂ (a); rGO (b); rGO/Cu_xO (c); rGO/MoS₂-LbL (d); rGO/MoS₂-mixing (e); rGOMoS₂-in situ (f); rGO/Cu_xO/MoS₂-LbL (g); rGO/Cu_xO/MoS₂-mixing (h); and rGO/Cu_xO/MoS₂-in situ (i), obtained in the range from -0.2 to 0.4V in 0.1 mol L⁻¹ NaCl aqueous solution.

Fig. S22: Electrochemical stability after 1000 charge and discharge cycles (-0.2 to 0.4 V) of rGO/CuxO/MoS₂-in situ at 2A g^{-1} , in 0.1 mol L⁻¹ NaCl aqueous solution.

				Specific					
Samples	Electrode	Cation	Solvent	Current	Capacity or	Retention	Reference		
-				Density	Capacitance	Rate			
rGO/Cu _x O/MoS _s -LbL	Anode	Na^+	Aqueous	100 mA g ⁻¹	1321 mA h g ⁻¹	78%	This work		
rGO/Cu _x O/MoS ₂ -mixing	Anode	Na^+	Aqueous	100 mA g ⁻¹	1056 mA h g ⁻¹	90%	This work		
rGO/Cu _x O/MoS ₂ -in situ	Anode	Na^+	Aqueous	100 mA g ⁻¹	1377 mA h g ⁻¹	100%	This work		
MoS ₂ /G	Anode	Li ⁺	Organic	100 mA g ⁻¹	1902 mA h g ⁻¹	76.45%	3		
MoS ₂ -SRGO	Anode	Li ⁺	Organic	50 mA g ⁻¹	896 mA h g ⁻¹	65%	4		
MoO ₂ @MoS ₂ /rGO	Anode	Na^+	Organic	100 mA g ⁻¹	604 mA h g ⁻¹	90.3%	5		
P-MoS ₂ /PANI/rGO	Anode	Li ⁺	Aqueous	1 A g ⁻¹	431.7 F g ⁻¹	93.5%	6		
MoS ₂ /rGO	Anode	Li ⁺	Organic	100 mA g ⁻¹	1289 mA h g ⁻¹	77%	7		
MoS ₂ /G	Anode	Li ⁺	Organic	1 A g ⁻¹	1897 mA h g ⁻¹	91%	8		
mPF-MoS ₂ @G	Anode	Na^+	Organic	100 mA g ⁻¹	488 mA h g ⁻¹	99.2%	9		
G/MoS ₂	Anode	Li ⁺	Organic	100 mA g ⁻¹	1453 mA h g ⁻¹	-	10		
MoS ₂ /PDC	Anode	Li^+	Organic	100 mA g ⁻¹	1354 mA h g ⁻¹	-	11		
MoS ₂ /grafeno	Anode	Li ⁺	Organic	250 mA g ⁻¹	553 mA h g ⁻¹	99%	12		
v-MoS ₂ /rGO	Anode	Na^+	Organic	2 A g ⁻¹	251 mA h g ⁻¹	95.7%	13		
MoS ₂ /Gra	Anode	Li ⁺	Organic	100 mA g ⁻¹	1145 mA h g ⁻¹	88%	14		
MoS ₂ /n-RGO	Anode	Li ⁺	Organic	100 mA g ⁻¹	1140 mA h g ⁻¹	94%	15		
MSRGO	Anode	Na^+	Organic	100 mA g ⁻¹	428 mA h g ⁻¹	90%	16		
CNTs/S@MoS ₂ /G	Cathode	Li ⁺	Organic	0.1 C	1537 mA h g ⁻¹	78.3%	17		
MoS ₂ /rGO	Anode	Na^+	Organic	100 mA g ⁻¹	338 mA h g ⁻¹	99%	18		
MoS ₂ /GR	Anode	Mg^{2+}	Organic	20 mA g ⁻¹	210 mA h g ⁻¹	87%	19		
V-MoS ₂ /rGOCTF	Cathode	Li ⁺	Organic	0.1 C	1379 mA h g ⁻¹	86%	20		
MoS ₂ /grafeno	Anode	Li ⁺	Organic	100 mA g ⁻¹	1044 mA h g ⁻¹	-	21		
MoS ₂ -G	Anode	Na^+	Organic	200 mA g^{-1}	606 mA h g ⁻¹	100%	22		
N-GRs/MoS ₂	Anode	Li ⁺	Organic	100 mA g ⁻¹	1151 mA h g ⁻¹	86%	23		
MoS ₂ -RGO	Anode	Li ⁺	Organic	$0.05 \ { m A g^{-1}}$	1102 mA h g ⁻¹	74%	24		
PG-MoS ₂	Anode	Li ⁺	Organic	100 mA g ⁻¹	1097 mA h g ⁻¹		25		
(MoS ₂)-grafeno	Anode	Li ⁺	Organic	100 mA g ⁻¹	1300 mA h g ⁻¹	93%	26		
(MoS ₂)-grafeno	Anode	Na^+	Organic	100 mA g ⁻¹	640 mA h g ⁻¹	93%	26		
MoS ₂ -Gr	Anode	Li ⁺	Organic	0.1 C	1209 mA h g ⁻¹	100%	27		
FL-MoS ₂ /grafeno	Anode	Li ⁺	Organic	100 mA g ⁻¹	980 mA h g ⁻¹	71.7%	28		
MoS ₂ /RGO	Anode	Li ⁺	Organic	100 mA g ⁻¹	1180 mA h g ⁻¹	94%	29		
G/MoS2	Anode	KOH	Aqueous	0.6 mA g ⁻¹	48,58 F g ⁻¹	-	30		
MoS2/grafeno	Cathode	Zn^{2+}	Aqueous	$0.05 \ A \ g^{-1}$	285 mA h g^{-1}	88.2%	31		
MoS2/Gr/PAni	Anode	Li ⁺	Organic	200 mA g ⁻¹	785 mA h g ⁻¹	82.3%	32		
MoO ₂ @MoS ₂ /rGO	Anode	Li ⁺	Organic	100 mA g ⁻¹	604 mA h g^{-1}	90.3%	5		
CNTs/S@MoS ₂ /Gr	Cathode	Li ⁺	Organic	0.1 C	1537 mA h g ⁻¹	78.3%	17		
MS/MO/CNT/G	Anode	Li ⁺	Organic	100 mA g^{-1}	640 mA h g ⁻¹	78.5%	33		
PEDOT/MoS ₂ /Gr	Anode	Li ⁺	Organic	-	1143.7 F g ⁻¹	73.3%	34		
CuO/MoS ₂ /rGO	Anode	Li ⁺	Organic	1 A g ⁻¹	1445 F g ⁻¹	91%	35		

Table S3. Values of capacity or specific capacitance of composites between MoS_2 and graphene, most used cations and electrolytes and retention rate found in the literature.

References

- 1 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
- 2 H. Mehl, C. F. Matos, E. G. C. Neiva, S. H. Domingues and A. J. G. Zarbin, *Quim. Nova*, 2014, **37**, 1639–1645.
- J. Wang, X. Zhao, Y. Fu and X. Wang, *Appl. Surf. Sci.*, 2017, **399**, 237–244.
- 4 M. Choi, S. K. Koppala, D. Yoon, J. Hwang, S. M. Kim and J. Kim, *J. Power Sources*, 2016, **309**, 202–211.
- 5 Y. Luo, X. Ding, X. Ma, D. Liu, H. Fu and X. Xiong, *Electrochim. Acta*, 2021, **388**, 138612.
- 6 J. Chao, L. Yang, H. Zhang, J. Liu, R. Hu and M. Zhu, J. Power Sources, 2020, 450, 227680.
- 7 Z. Yu, J. Ye, W. Chen, S. Xu and F. Huang, *Carbon N. Y.*, 2017, **114**, 125–133.
- 8 M. Yang, S. Ko, J. S. Im and B. G. Choi, J. Power Sources, 2015, 288, 76–81.
- 9 J. Deng, C. Zeng, C. Ma, J. Fold von Bülow, L. Zhang, D. Deng, Z. Tian and X. Bao, *Mater. Today Energy*, 2018, 8, 151–156.
- 10 T. Wang, G. Zhao, C. Sun, L. Zhang, Y. Wu, X. Hao and Y. Shao, *Adv. Mater. Interfaces*, 2017, 4, 1–8.
- 11 Y. Huang, J. Zou, L. Luo, Z. Zhao, H. Liu, Y. Huang, A. Ren and Z. Wang, J. *Mater. Sci.*, 2022, **57**, 1246–1260.
- 12 S. Mateti, M. M. Rahman, P. Cizek and Y. Chen, *RSC Adv.*, 2020, **10**, 12754–12758.
- 13 H. Li, X. Wen, F. Shao, S. Xu, C. Zhou, Y. Zhang, H. Wei and N. Hu, J. Alloys Compd., 2021, 877, 160280.
- Y. Liu, X. He, D. Hanlon, A. Harvey, J. N. Coleman and Y. Li, ACS Nano, 2016, 10, 8821–8828.
- 15 N. Lingappan and D. J. Kang, *Electrochim. Acta*, 2016, **193**, 128–136.
- 16 J. Li, H. Tao, Y. Zhang and X. Yang, J. Electrochem. Soc., 2019, 166, A3685– A3692.
- 17 X. Fang and M. Zhang, *Ionics (Kiel).*, 2021, 27, 3875–3885.
- 18 L. David, R. Bhandavat and G. Singh, ACS Nano, 2014, 8, 1759–1770.
- 19 C. Wu, G. Zhao, X. Yu, C. Liu, P. Lyu, G. Maurin, S. Le, K. Sun and N. Zhang, *Chem. Eng. J.*, 2021, **412**, 128736.
- B. Cui, X. Cai, W. Wang, P. Saha and G. Wang, J. Energy Chem., 2022, 66, 91– 99.
- V. O. Koroteev, S. G. Stolyarova, A. A. Kotsun, E. Modin, A. A. Makarova, Y. V. Shubin, P. E. Plyusnin, A. V. Okotrub and L. G. Bulusheva, *Carbon N. Y.*, 2021, 173, 194–204.

- 22 S. Anwer, Y. Huang, B. Li, B. Govindan, K. Liao, W. J. Cantwell, F. Wu, R. Chen and L. Zheng, *ACS Appl. Mater. Interfaces*, 2019, **11**, 22323–22331.
- 23 Z. Xiao, L. Sheng, L. Jiang, Y. Zhao, M. Jiang, X. Zhang, M. Zhang, J. Shi, Y. Lin and Z. Fan, *Chem. Eng. J.*, 2021, **408**, 127269.
- 24 M. Choi, J. Hwang, H. Setiadi, W. Chang and J. Kim, J. Supercrit. Fluids, 2017, 127, 81–89.
- 25 W. Qiu, J. Jiao, J. Xia, H. Zhong and L. Chen, *RSC Adv.*, 2014, 4, 50529–50535.
- 26 S. Kalluri, K. H. Seng, Z. Guo, A. Du, K. Konstantinov, H. K. Liu and S. X. Dou, *Sci. Rep.*, 2015, **5**, 1–8.
- 27 J. Han, H. Jang, H. Thi Bui, M. Jahn, D. Ahn, K. Cho, B. Jun, S. U. Lee, S. Sabine, M. Stöger-Pollach, K. Whitmore, M. M. Sung, V. Kutwade, R. Sharma and S. H. Han, *J. Alloys Compd.*, 2021, 862, 158031.
- 28 L. Xu, Z. Jiao, P. Hu, Y. Wang, Y. Wang and H. Zhang, *ChemElectroChem*, 2016, **3**, 1503–1512.
- 29 G. Liu, Y. Feng, Y. Li, M. Qin, H. An, W. Hu and W. Feng, *Part. Part. Syst. Charact.*, 2015, **32**, 489–497.
- 30 R. N. A. R. Seman and M. A. Azam, J. Sci. Adv. Mater. Devices, 2020, 5, 554–559.
- 31 S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao, Q. Tan, N. Zhang, P. Li, L. Jiao and X. Qu, Adv. Mater., 2021, 33, 1–9.
- 32 S. Han, Y. Ai, Y. Tang, J. Jiang and D. Wu, *RSC Adv.*, 2015, **5**, 96660–96664.
- 33 J. Li, S. Du, H. Tao and X. Yang, *Ionics (Kiel).*, 2021, 27, 75–84.
- 34 D. Sarmah and A. Kumar, *J. Energy Storage*, 2021, **35**, 102289.
- 35 P. S. Selvamani, J. J. Vijaya, L. J. Kennedy, B. Saravanakumar, M. Bououdina and J. R. Rajabathar, *Synth. Met.*, 2021, **278**, 116843.