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S1. Polymerization
This section is reproduced from ref [1] for a reader’s convenience. 
We assume that the primary gel swells in a liquid composed solely of secondary monomer 

with no solvent present. (This scenario was denoted Case I in ref [1].) The absorbed monomeric 
units undergo the reversible chain-growth polymerization reaction schematically shown in Fig. S1; 
the reaction proceeds until the equilibrium molecular weight distribution (MWD) is established. 
We assume that the volume of the gel does not change during the polymerization process. The 
kinetics of polymerization is described in terms of the dimensionless (in the units of  with  1

0v 0v
being volume of one molecular unit) concentrations  of linear chains containing  kn 1k 
monomeric units. When the polymerization reaches the state of equilibrium, the equilibrium 
concentrations  correspond to the Flory MWDkn

,   (S1.1)1
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Here,  is the distribution parameter, which depends on the polymerization rate constants  and  p 
 (see Fig. S1), and on the volume fraction of polymer in the swollen primary gel, : 
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For the Flory MWD, the number and weight averaged degrees of polymerization are given 
by the following respective equations:
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Figure S1. Schematic representation of the polymerization 
process.
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We use the ratio of polymerization rate constants  to ensure that the 4/ 2 10    

polymers formed during polymerization are relatively long, .100nN 

S2. Cross-link density and sol fraction
This section is reproduced from ref [1] for a reader’s convenience. 

The cross-linking of the polymer chains results in the formation of a polymer network that 
encompasses the gel and sol. The gel spans the entire system and exhibits macroscopic elasticity, 
and the sol is a collection of network-like polymer structures, which are not attached to the 
macroscopic gel and could be removed from the sample. Correspondingly, the result of cross-
linking is characterized by the cross-link density in gel, , and the weight fraction of the sol, . 0c S
By definition, the cross-link density is the concentration of the elastically active polymer strands 
connecting two cross-links. 

We utilize the theory of tree-like branched polymers by Dobson and Gordon to calculate 
 and .2,3 Theories that do not account for the presence of cyclic configurations are in general 0c S

not applicable to cross-linked polymers. It is, however, argued that the theory of tree-like polymer 
structures can nevertheless be used to describe densely cross-linked systems like vulcanized 
rubbers, where there are many cross-links per polymer chain4. Here, we use the theory by Dobson 
and Gordon as outlined in ref.5 

The theory by Dobson and Gordon is formulated for polymer chains with the Flory MWD. 
The cross-link density  and sol fraction  are calculated as functions of the Flory distribution 0c S
parameter  and fraction of monomeric units forming cross-links . Upon cross-linking, the p 
macroscopic network (gel) exists in the system if , where the critical value  is3

cr  cr

(S2.1)1( 1)cr wN  

Here,  is the weight averaged degree of polymerization given by eq. (S1.4). The value of the wN
sol fraction depends on  and on the Flory distribution parameter3   p
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The number of elastically active chains per a primary polymer chain is closely related to the cross-
link density and is determined for the Flory distribution as2

   , (S2.3)1/2 3 1/2( , ) ( )(1 ( , ) ) (1 2 ( , ) )el np N p v p v p      

where the number averaged degree of polymerization  is given by eq. (S1.3), and  is nN ( , )v p 
the solution of the following equation

(S2.4)2[1 (1 )( ( ) 1)]nv v N p    
The cross-link density is calculated using eq. (S1.3) and (S2.3) as
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where  is the total volume fraction of polymer in gel. In the case of random copolymer network 
(RCN), the gel network encompasses the primary and secondary monomeric units.

We consider the random copolymer networks obtained due to the processes of cross-
linking and inter-chain exchange as independent. Further, it is assumed that the reaction rate 



constants are the same for all configurations of the inter-chain exchange that are possible in 
polymers consisting of two types of monomeric units. 

At a fixed system size, the total volume fraction of monomeric units at equilibrium degree 
of swelling of Stage 0 primary network is

(1) (g) 1m    

Here,  is the volume fraction of polymer in the swollen Stage 0 primary gel, and  is volume  (g)
m

fraction of the secondary monomers inside the Stage 0 gel. Superscript “(1)” denotes that the 
corresponding value characterizes Stage 1 of the gel growth. After polymerization (and cross-
linking) of the secondary monomers, the total concentration of polymer chains in the gel is
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Here,  in the cross-link density of the primary network, and  is the number averaged 0c ( )nN p
degree of polymerization of the secondary polymers given by eq. (S1.3). We calculate the 
concentration of primary polymer chains connecting two cross-linking points as  under the 0 0/c  
assumption that there is no dangling chains in the primary gel. The number averaged degree of 
polymerization in the entire system is, by definition,
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It is important to note that inter-chain exchange reactions do not change the total number of 
polymer chains and the product of the reactions exhibit the Flory MWD, eq. (S1.1).6,7 The 
distribution parameter can be determined according to eq. (S1.3) as

(S2.7)(1) (1)1 1/ np N 
In this random copolymer system, the number fraction of monomer units forming cross-links is

 (S2.8)(1)
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where  is the fraction of cross-linkers in the primary network assuming that each 1
0 0 0(2 )c  

cross-link connects four elastically active chains. 
We assume that the monomer units containing cross-linkers are distributed randomly along 

the random copolymer chains. Then, the sol fraction and cross-link density in the RCN are 
determined using the Dobson and Gordon theory as described above by substituting eqs. (S2.6)-
(S2.8) into the respective eq. (S2.2) and (S2.5) to obtain
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where  is given by eq. (S2.6) and we take into the account that .(1)
nN (1) 1 

S3. Gel Lattice Spring Model (gLSM)
The analytical equations1 used to model the stage-wise growth of a gel were incorporated 

into our gel lattice spring model (gLSM) computational technique briefly outlined below. The 3D 



gLSM8–11 is a finite element approximation and allows us to numerically solve the dynamic 
equations that describe swelling of gels in the process of growth. 

The gLSM is based on the two-fluid model for polymer networks.12–14 It is assumed that the 
dynamics of the polymer network is purely relaxational, and the gel motion occurs solely due to 
the polymer-solvent interdiffusion. The frictional drag force due to the motion of the solvent is 
balanced by the forces acting on the swollen, deformed gel. Hence, the velocity of the polymer, 

, can be calculated as 9)( pv
  (S3.1)( ) 3/2
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Here, the kinetic coefficient  is dimensionless and calculated as 9  , 0 2 1 1
0 0 0 0 0( )Bk T v l t   

and is inversely proportional to the polymer-solvent friction coefficient . Further,  and  0 0l 0t
denote the units of length and time respectively, and stress is measured in units of , 0/ vTkB

where  is the volume of a monomeric unit within a polymer chain.0v
Within the framework of the gLSM, a 3D gel sample is represented by a set of general linear 

hexahedral elements.15,16 Initially, the sample is un-deformed and consists of   identical x y zL L L 

cubic elements; here  is the number of elements in the -direction, . In the un-deformed iL i zyxi ,,
state, each element is characterized by the volume fraction  and cross-link density . Upon 0 0c
deformation, the elements move together with the polymer network so that the amount of polymer 
and number of cross-links within each hexahedral element remain equal to their initial values. 
Correspondingly, the volume fraction of polymer in the element  is determined as ),,( kjim

, where  and  are the un-deformed element size and volume of the )(/)( 3
0 mm V   )(mV

deformed element, respectively. 
The gel energy per unit volume in the un-deformed state, , is expressed as a function ),( 31 IIu

of the first, , and third, , invariants of the strain tensor :8–10
1I 3I B̂
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Here,  represents the free energy density of the neo-Hookean 1/20 0
1 3 1 3( , ) ( 3 ln )

2el
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model for the elasticity of a polymer network with Gaussian chains. The second term on the right 
hand side of eq. (S3.2) describes free energy density due to the polymer-solvent interaction 
according to the Flory-Huggins model:

(S3.3)1/2
FH 3 FH 3( ) ( ) (1 ) ln(1 ) (1 )pmu I u I            

In eq. (S3.3), the volume fraction of polymer  itself depends on  as , where  is  3I 1/2
0 3I   0

the volume fraction of polymer in the un-deformed state. In the simulations, we use   as the pm
interaction between the monomers of the parent network (p) and the secondary monomer (m). 

The gel dynamics is described through motion of the nodes of the elements caused by the 
forces acting on these nodes. In order to determine the nodal forces, we use the finite element 
approximation to calculate total energy of the gel as 

    (S3.4) m m)(3 uUtot



where the contribution from the element , , depends only on the coordinates of the nodes m )(mu
of this element denoted as , . (Note that  is the gel energy per unit volume )(mrn 8,,2,1 Kn )(mu
of the un-deformed element as given in eq. (S3.2)) As a result, the force acting on node  within n
element  is given by the equationm
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The same node can belong to several elements, so the right hand side of the above equation 
contains contributions from all elements adjacent to a given node. Each node in the lattice can be 
labeled globally by assigning digits in . Finally, recall our assumption of purely ( , , )x y zn n nn
relaxational dynamics, the velocity of the node  is proportional to the force and is determined n
from an equation similar to eq. (S3.1)

  (S3.6)d M
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where  is the mobility of the node proportional to the kinetic coefficient . The details on Mn 0
the derivation and functional forms of  are provided in8,10,11. Our method of calculating the nF
mobility  is described below.Mn

The total force consists of the spring and pressure contributions, which are calculated 
separately within each element and then summed up at each of the nodes. We approximate the un-
deformed material with the tri-linear cubical elements of size , so that within each element, the 
deformation and velocity fields are  
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where , , are the element (local) shape functions, which depend on the ( )nN X 1,2, ,8n  K
coordinate  in the undeform state. The element shape functions have the propertyX
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The strain tensor invariants  and  are calculated through the base vectors as1I
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The base vectors  is given by,( )i tg
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Within the finite element approximation, the base vectors are functions of the element nodal 
coordinates:

 (S3.13)
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Since, the gel dynamics is considered to be in the overdamped limit, the velocity at the 
given node  of the gel element is thus proportional to the force acting at that node n m

 (S3.14) n n nv F
Where  is the nodal friction coefficient. The nodal force is determined by using the global shape n
function n
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where  is the deformation-gradient tensor. It can be shown that the above equation provides the F̂
same result for the elemental nodal forces as eq. (S3.5). From the force balance equation (S3.1), 
we obtain

0
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Thus, the velocity at the nodes are obtained as 
(S3.15)/ n n nv F

Here,  is a sum over all the elemental contribution to mobility of global node . n n
Correspondingly, the elemental contribution to mobility of local node  belonging to 1,2, ,8l  K
element  is calculated asm

,
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where  is the shape-function at node l and . The numerical integration in the above lN 1
0J  

equation is performed using the 8-point Gaussian numerical integration scheme. 
After all nodal velocities are obtained at a given time-step, the nodal coordinates are 

updated according to the simple Euler integration scheme. 

gLSM for Stage 1 growing random copolymer (RCN)
Force calculations

The free energy for the RCN Stage 1 gel is given by:
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Here, the elastic contribution to the free energy density is given by:
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and the Flory-Huggins free energy density is
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where  and  are the volume fractions of primary and secondary monomeric units in the polymer  
network, respectively. Note that the free energy depends on the history of deformation as  and 1I

 depends on the swollen Stage 0 gel at time τ. At Stage 0, the primary gel network swells in a 3I



liquid consisting of the secondary monomer to a degree of swelling  .The entrapped monomer 0
undergoes polymerization and cross-linking according to ref 1. The dimensionless cross-link 

density of after Stage 1 of growth is given by . The volume fraction of the secondary 
( )
1

RCNc
monomeric units incorporated into polymer in gel after the stage 1 of growth is given by  (1)
calculated as describe in the main text.

The main step in the gLSM formulation is the finite element approximation of the invariant 
 of the relative strain tensor . The relative strain tensor can be determined using the ),(1 tI ),(ˆ tb

following decomposition:
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and  is the left Cauchy-Green strain tensorˆ ( )tC

   Tˆ ˆ ˆ( ) ( ) ( )t t t C F F
The superscript “T” stands for the transposition operation. The first relative strain invariant is 
defined as , so it can be equivalently written in the following way1 ˆ( , ) tr ( , )I t t  b
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In order to calculate the coordinate derivatives of , we represent the latter in the component 1( , )I t 
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Thus, we have
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The matrix elements of  can be calculated analytically as1ˆ C
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In the above equation,  is the Levi-Civita symbol, so the sets of indexes  and ijk ( , , )i k l
 are the cyclic permutations of . No summation over the repeated indexes is ( , , )j m n (1, 2,3)

performed. Thus, 
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The final equation (S3.19) is used to calculate the elastic force for the stage 1 (RCN) . 
The last term in the eq. (S3.16) is calculated as 
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Here, we utilize the third invariant of the relative Finger strain tensor, , ˆ ( , )t b
. 3 3 3ˆ( , ) det[ ( , )] ( ) / ( )I t t I t I   b

Finally, the pressure force acting on the node  within an element is calculated as: n
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Calculation of mobility for grown random copolymer network
Calculation of the mobility for the swelling primary network described above is 

generalized straightforwardly to the case of grown RCN. In the latter case the volume fraction of 
polymer in the random copolymer network, , is calculated as (see the main text)tot

, (1) (1)( ) [ ( )] [ ( )]tot t t t     

where  is the volume fraction of the primary monomeric units after ( )(1) 3
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removal of the sol fraction, and  is the volume fraction ( )(1) 3 3
0 0 01( ) (1 )(1 )( / )RCNS       

of the secondary monomers incorporated into the stage 1 RCN. Here,  is the equilibrium degree 0
of swelling of the primary network in the solution containing the secondary monomer before 
polymerization followed by the simultaneous inter-chain exchange and cross-linking, i.e., at the 
end of stage 0. 

The elemental contribution to mobility of local node  belonging to element 1,2, ,8l  K
 is calculated asm
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where  is a nodal shape-function. We take into account that  in the equation for lN 1/3( ) ( )t J t 
. In the above equation for , the numerical integration over the reference element tot ( )l m

volume  is performed using the 8-point Gaussian numerical integration scheme.0 ( )V m



Calculation of the Elastic Moduli
We use the neo-Hookean model to describe elasticity of a swollen gel - see eqs. (S3.2) 

and (S3.3) in the SI.  Within this model, the shear modulus of a swollen gel depends only on the 
crosslink density   and the equilibrium degree of swelling ,  , whereas the 0c  0 0 /G c 
osmotic pressure contributes to the bulk modulus.

We utilize the method proposed in our earlier paper11 to calculate the modulus of the gels. 
Below we briefly describe the calculation steps.
Linearization of the stress tensor  around a state of swelling equilibrium results inσ̂

( ) ( )ˆˆ ˆ ˆ( ) tr[ ( )] 2 ( )L Lt t t   σ ε I ε

where  and  are the first and second Lame parameters, respectively, and  is the unit ( )L ( )L Î
tensor. The shear modulus  is equal to the second Lame parameter. After Stage 0 of growth, G
the shear modulus  is0G

,0 0 0/G c 
where  is cross-link density in the as-prepared gel, and  is the degree of swelling of primary 0c 0
gel after Stage 0. For the RCN Stage 1 gel, the shear modulus  is calculated as1G
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where  is cross-link density of the random-copolymer network, and  is the degree of ( )
1

RCNc 1
swelling of Stage 1 gel. The degree of swelling of gel characterizes the linear dimension of gel 
relative to its size in the un-deformed state. The size of swollen primary gel is denoted . As,0

, where  is the volume of swollen primary gel and  is the volume of the as-1/3
0 0( / )iniV V  0V iniV

prepared (un-deformed) primary gel.” We assume that the processes of polymerization and 
crosslinking of secondary chains followed by the inter-chain exchange take place within fixed 
volume . The newly formed random copolymer network is un-deformed and has the volume 0V

. After swelling, the RCN gel acquires the volume , and we use  to 0V 1V 1/3
1 1( / )iniV V 

characterize its size relative to the un-deformed size of the primary network. The size of swollen 
RCN relative its own un-deformed size, i.e., the actual degree of swelling, is  and hence, 1 0/ 

.( )
1 0 11 /RCNG c  

 Determining the bulk modulus  requires calculation of the both Lame parameters because K
. For Stage 0 gel, the first Lame parameter  is found equal to2 / 3K    ( )

0
L

( ) FH
FH0

eq

( ) ( )L     


 
   

where the Flory-Huggins osmotic pressure is given by eq (2) in the main text, the subscript “eq” 
means that the expression on the left-hand side is calculated under swelling equilibrium. For Stage 
1 gel, the first Lame parameter  is calculated as( )

1
L

( ) FH FH
FH1

eq

( , ) ( , ) ( , )L           
 

  
     



where the Flory-Huggins osmotic pressure is given by eq (4) in the main text, the subscript “eq” 
has the same meaning as above.

Finally, Young’s modulus E for each stage of growth is calculated as 17:
9

3
KGE

K G




Calculation of the average strain  
We define the average strain  as , where  is the first invariant of the Finger  1 / 3I  1I

strain tensor. We calculate the value of  using eq. (S3.10).1I

Calculation of the repulsion from a wall
We utilize the formalism of node-to-node contact as suggested in18 to introduce repulsion 

between the freely moving gel nodes approaching the boundary constraints (walls). We calculate 
the distance of a freely moving node in a gel boundary element from the wall. For a node of a r
given element represented by the coordinates  , we calculate the normal distance of this ( , , )x y z
node point  from the wall coordinates. For the case, where wall is chosen to be at , ( , , )x y z 0y 
we assume that the point  on the wall will repel the approaching node point. Similarly, if ( ,0, )x z
the wall is along the line , we calculate the distance choosing the wall coordinate to be 0x 

. The repulsion forces are considered to be due to the short-ranged Morse potential as was (0, , )y z
utilized in19, and are non-zero only if , where  is the cutoff distance. In this case, the force cr r  cr

applied to the node  is given by  due to normal distance between the sample X 1
M ( )X F rF n

node point and the wall coordinate, where  is the value of force. M
2( )M M

M ( ) e 1
2

ca r ra DF r    
Here  and  are the interaction parameters. In simulations, we assign , , Ma MD 0.25cr  M 50a 

and  which prevent the gel nodes from intersecting with the walls. 1
M 10D 



S4. Additional Figures 

Figure S2 shows the difference in free energy (green disks) of the equilibrium swollen 
configurations of the Stage 0 primary gel compared with the free energy of the freely swollen 
equilibrium primary gel. Configuration 0 depicts the equilibrium configuration of the freely 
swollen Stage 0 gel. When the Stage 0 gel is bound by walls on the two sides  and 0, 0x y 
then swollen, the gel reaches a flat steady state depicted by Configuration 1. This is an unstable 
steady state. Upon addition of an isotropic noise to the gel nodes in Configuration 1, the gel 
attains a final buckled equilibrium structure. The point (green disk) at ‘2’ shows that the free 
energy of the buckled Configuration 2 is lower than the constrained flat state at Configuration 
1. The gray dashed line is drawn to guide the eye. 



Figure S3 shows the final equilibrium configuration of the Stage 0 primary gels, (A) and (C), 
and the grown Stage 1 RCN gels, (B) and (D), for two different cross-link density of the parent 
gel. Cross-link density in (A) is  and in (B)  The cross-linker fraction for the 0 0.0013c  01.25c
grown Stage 1 RCN gels in (B) and (D) is .0.1 



Figure S4 Shape changes due to gel swelling in square shaped gels of size  due to 35 35 2 
confining boundaries at the left and bottom surfaces. Figure (A) shows the swollen “buckled” 
configuration of the Stage 0 gel. Upon release of the boundary constraints, the Stage 0 gel goes 
from the buckled (A) to the flat (B) configuration. Figure (C) shows the final swollen 
configuration of the grown Stage 1 RCN gel at  where growth of Stage 1 started from 0.4 
the buckled configuration of Stage 0 gel shown in (A). Upon release of boundary constraints, 
the Stage 1 RCN gel does not relax back to a flat state but stays buckled (D). The color bars 
represent the Young’s modulus, E.



Figure S5  The final equilibrium configuration attained upon release of bounding walls in the 
patterned gel sample in Figure 5 in the main text. The gel samples were bound by walls at 

 and . (A) The gel has uniform distribution of the secondary cross-links at 0X  0Y 
 and upon release relaxes to a flat state. (B) The left half of the gel has  whereas 0.1  0.4 

the right half has . Upon release of the boundary constraints, the gel takes the double 0.1 
roll shape. (C) The left half of the gel  has  and the right half has . Upon release 0.1  0.4 
of the boundary constraints, the gel takes a similar double roll shape. The colors indicate the 
spatial distribution of the total volume fraction of polymer in the gel .tot



Figure S6 (A-B) Top view and (C-D) Side view of the equilibrium swollen state of the grown 
Stage 1 RCN gels where the samples of size  are bound by walls at three sides, (A) 0.1 
and (C), and four sides, (B) and (D). The colors in (A) - (D) indicate the spatial distribution of 
the total volume fraction of polymer in the gel . Figures (E)-(F) show a heat-map of the tot
displacement  in the vertical direction of the middle layer of the gel elements with respect to zd
a flat reference state where the mid-layer has the value of  for the Stage 1 gel as a 1.3187Z 
function of the index of the gel nodes along the X and Y direction.



Supplementary Movie 1 

Release of boundary constraint of an equilibrated ‘buckled’ grown Stage 1 (RCN) gel prepared 
from a freely swollen ‘flat’ Stage 0 gel. Grown RCN gel relaxes to a flat state.

Supplementary Movie 2

Release of boundary constraint of an equilibrated ‘buckled’ grown Stage 1 (RCN) gel prepared 
from an equilibrated ‘buckled’  Stage 0 gel. Grown RCN gel stays buckled.

Figure S7 (A) Top view and (B) Side view of the final swollen Stage 0 gel, which was prepared 
in the shape of the grown RCN Stage 1 gel shown in Fig. 7 in the main text. All the gel elements 
have the same volume fraction  and cross-link density . The equilibrium degree of swelling 0 0c
of the swollen primary stage 0 gel is 1.3178. 
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