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1 Experimental procedures and additional data

1.1 Fluorescence spectra and the self-absorption problem

A delicate issue posed by fluorescence spectroscopy concerns the choice of the

sample concentration, which must be low enough to minimize trivial inner fil-

ter effects. Fig.S1 compares the emission spectra of DCM and NR dispersed

in mCBPCN films, obtained either by spin coating or drop casting, and with

loading varying from 1% to 0.01% by weight. Upon increasing the dye loading
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Figure S1: Emission spectra of DCM and NR in mCBPCN films prepared by

drop-casting (dc) or spin-coating (sc) at different concentrations (expressed in

%wt). Emission spectra were obtained subtracting the emission spectrum of the

pure host.

a red-shift of the emission band is clearly seen, more pronounced in drop cast

films than in spin-coated samples. This behavior is safely ascribed to a par-

asitic self-absorption (or inner-filter) phenomenon, i.e., to the re-absorption of

the light emitted by the dye, as due to the sizable absorbance of the samples

in the region where emission and absorption bands do overlap. The red-shift

increases with the absorbance, i.e. with dye concentration and the sample thick-

ness. Indeed self-absorption affects more drop-cast than spin coated films, since

typically upon drop-casting, thicker films are obtained than upon spin coating.

Fig. S1 shows that at low enough concentrations, emission spectra of thin

samples are virtually unaffected by further dilution, indicating the ideal condi-
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tions for fluorescence measurements. In this work, low dye loading is required

for drop-cast films (down to 0.01%), while spin-coating allows to work with

slightly larger concentrations, up to 0.1%. Because drop-cast films of some

hosts (mCP and DPEPO) are prone to crystallization, in our fluorescence study

we focused on 0.1% spin-coated films, which offer a good compromise between

signal intensity and minimization of self-absorption.

We underline that the detrimental effect of self-absorption on fluorescence,

being proportional to the sample absorbance, is especially tricky for probes

characterized by high molar extinction coefficients, like DCM and Nile Red

(> 4× 104 M−1 cm−1). For typical TADF dyes, with poorly conjugated donor

and acceptor moieties, the CT bands are much weaker, leading to less stringent

requirements on fluorescence measurements.
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1.2 Raman spectra

Unlike fluorescence, Raman scattering do not suffer from inner-filter effects, al-

lowing for the characterization of highly absorbing samples, e.g., concentrated

samples (> 0.1% in this work) or thick films (as obtained by drop-casting).

Indeed, high concentrations and/or thickness must be used to achieve good

signal-to-noise ratios. For this reason, the results of Raman spectra were col-

lected from drop-cast films with 1% dye loading.
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Figure S2: Raman spectra of DCM in different solvents (top panel) and matrices

(bottom panel).
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Figure S3: Raman spectra of Nile Red in different solvents (top panel) and

matrices (bottom panel).
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1.3 Time resolved emission spectra (TRES), TCSPC tech-

nique

TRES were collected on the same samples used for fluorescence measurements.

The time-evolution of TRES, recorded with the time-correlated single-photon

counting (TCSPC) technique, was analyzed using a global analysis program

package (glotaran: https://glotaran.org)[JSSGlotaran]. The adopted kinetic

scheme was constituted by a three component unidirectional-sequential model

with increasing lifetimes, and the evolution of each component is described by

a single exponential decay. The three spectral components allowed us to repro-

duce the simultaneous frequency-shift of the fluorescence emission peak (due

to the solvent relaxation) and the decay of the fluorescence spectrum (due to

population relaxation). The entire temporal trace was fitted by the convolution

of the the model function with a Gaussian-shaped instrumental response func-

tion whose full-width at half maximum is an adjustable fitting parameter. The

procedure leads to a raw estimate of the time resolution (0.3 +/- 0.2 ns), and

of the origin of the time axis.
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Figure S4: Time-resolved emission spectra (TRES) of DCM (top panels) and

NR (bottom panels) in different matrices. Time units: ns.
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Figure S5: Experimental time-resolved emission spectra (TRES) of DCM (top

panels) and spectral components (lower panel) used to simulate spectral evolu-

tion of TRES. Time constant for each spectral component are reported as an

inset in lower panels. Time units: ns.
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Figure S6: Experimental time-resolved emission spectra (TRES) of NR (top

panels) and spectral components (lower panel) used to simulate spectral evolu-

tion of TRES. Time constant for each spectral component are reported as an

inset in lower panels Time units: ns.
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1.4 Pump-probe spectra

Self-absorption is not an issue for pump-probe spectra, so we collected data on

drop-cast films at 1% loading, as to improve the signal to noise ratio.

Figure S7: Pump-Probe spectra of NR in Zeonex, recorded with the LR-pp

setup (upper panels) and with US-pp setup (lower panels).
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Figure S8: Pump probe spectra of NR in mCBPCN matrix (US-pp setup),

at 77K (upper panels) and at room temperature (lower panels). The time-

dependence of the maximum of the stimulated emission band at the two tem-

peratures is reported in Fig. S10, top panel.
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Figure S9: Pump probe spectra of NR in DPEPO matrix (US-pp setup), at 77K

(upper panels) and at room temperature (lower panels). The time-dependence

of the maximum of the stimulated emission band at the two temperatures is

reported in Fig. S10, bottom panel.
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Figure S10: Comparison between the temporal evolution of the wavelength of

the maximum of the stimulated emission at Room temperature (blue and light

blue dots) and at 77K (red dots), for NR in mCBPCN matrix (upper panel)

and DPEPO (lower panel).
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2 The model: dyes in liquid solvents

2.1 Steady-state spectra

The low-energy photophysics of NR and DCM in solution is well described in

terms of essential state models, a family of parametric Hamiltonians developed

and extensively validated in the last two decades. Specifically, our dyes are

π-conjugated molecules with an electron donor and an electron-acceptor group,

D-π-A. Their low-energy physics is described in terms of two electronic states,

|N⟩ and |Z⟩, corresponding to the neutralD−π−A and zwitterionicD+−π−A−

structures, respectively. A single harmonic vibrational coordinate, Q̂ = (d̂† +

d̂)/
√
2, accounts for the variation of the molecular structure when the electron

is transferred from the D to the A site. The Hamiltonian reads:

Ĥmol = −τ σ̂x +
[
2z0 −

√
ℏωvεv

(
d̂† + d̂

)]
ρ̂+ ℏωv

(
d̂†d̂+

1

2

)
(1)

where σ̂x = |N⟩⟨Z| + |Z⟩⟨N | and ρ̂ = |Z⟩⟨Z| are the hopping and the ionicity

operators. The molecular model is fully defined by four parameters: z0, half the

energy gap between the two electronic states, τ the mixing matrix element, ωv

the frequency of the vibrational mode and ϵv the vibrational relaxation energy.

The dipole moment operator is defined as µ̂ = µ0ρ̂, thus neglecting all matrix

elements of µ̂ except for µ0, the large dipole associated with the |Z⟩ state. While

µ0 would introduce an additional parameter, it is irrelevant for our calculations,

where absolute absorption intensities are not addressed.

To address polar solvation, we rely on the Onsager model that describes the

solute-solvent interaction in the dipolar approximation. Specifically, a polar

medium surrounding a solute molecule generates at the solute location an elec-

tric field, the reaction field, proportional to the molecular dipole moment. It is

convenient to define the effective solvation field F in energy units so that the

Hamiltonian of the molecule in solution reads:

Ĥ = Ĥmol − F ρ̂+
F 2

4ϵor
(2)

where the second term describes the interaction between the field (or, to be

specific, the field component parallel to the molecular dipole moment) and the
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solute molecule, and the last term accounts for the elastic restoring force with

ϵor measuring the solvent relaxation energy. Polar solvation is related to the

slow, typically overdamped, motion of polar solvent molecules around the so-

lute. Accordingly, its kinetic energy is neglected and F is treated as a classical

coordinate.

For each value of F , the Hamiltonian in eq. 2 is written on the basis obtained

as the direct product of the two electronic states |N⟩ and |Z⟩ and the the firstM

eigenstates of the harmonic oscillator associated with the vibrational coordinate,

setting M to a large enough value to reach convergence (M=15 in this work).

The diagonalization of the matrix Hamiltonian gives the numerically exact non-

adiabatic vibronic eigenstates of the molecule. These F−dependent eigenstates

are used to calculate F -dependent absorption A, fluorescence F and Raman R

spectra using the following expressions:

A(ω;F ) ∝ ω
∑
i>1

|µi1(F )|2 exp
(
− (ωi1(F )− ω)2

2σ2

)
(3)

F (ω, F ) ∝ (ω)3
∑
i<f

|µif (F )|2 exp
(
− (ωif (F )− ω)2

2σ2

)
(4)

R(ω, F ) ∝ Im

∑
i>1

1

ωi1(F )− ω − iγ

∑
j>1

2µ1j(F )µji(F )

ωj1(F )

 (5)

where i, j run on the eigenstates (i=1 is the ground states) and the fluorescent

state f (the Kasha state) is identified as the first eigenstate of the electronically

excited manifold. ωij(F ) and µij(F ) are the transition frequency and dipole

moment of the j → i transition. A Gaussian lineshape with standard deviation

σ is assigned to each transition for the absorption and fluorescence spectra,

while a Lorentzian lineshape with half width at half maximum γ is used for

Raman spectra. In this work σ = 0.055 eV, γ = 0.0005 eV.

Finally, the spectra of the solvated dye , in top panels of Fig. 8 (the main

text) and of Fig. S11 are calculated averaging over the field distributions as

relevant to the ground state, for the absorption and Raman spectra, and over

the field distribution relevant to the Kasha state, for the steady-state fluores-

cence spectra. Of course this approach works well for fluorescence spectra in
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liquid (non-viscous) solvents, where the relaxation time of the solvents, in the

ps timewindow, ensure the full equilibration of the solvent around the excited

solute before fluorescence takes place.
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Figure S11: DCM: calculated steady state spectra (from left to right: Raman,

absorption and fluorescence spectra). Top panels and bottom panels refer to

liquid and solid samples, respectively. Molecular parameters are listed in Table

1, main text, the same solvent relaxation energies, ϵor=0.1, 0.32, 0.65, 0.75 eV

for CCl4, CHCl3, DMF and DMSO, respectively, apply to both absorption and

fluorescence spectra. For matrices, Raman and absorption spectra are simulated

setting the solvent relaxation energy to ϵor=0.1, 0.65, 0.7, 0.9 eV for Zeonex,

MCP, MCBPCN and DPEPO, respectively. For fluorescence spectra the relax-

ation energy of each matrix is partitioned into a static component set to ϵstor=0.0,

0.45, 0.55, 0.7 eV for Zeonex, MCP, MCBPCN and DPEPO, respectively, and

a dynamical component set, for the same matrices, to ϵdynor =0.1, 0.2, 0.15, 0.2

eV.

2.2 Time-resolved spectra

To address time-resolved spectra, we must account for the concurrent relaxation

of the molecule and of the environment after the impulsive excitation of the dye.

As for the dye relaxation, we adopt the Redfield approach and introduce a bath

of harmonic oscillators
∑

i ℏωi(b̂
†
i b̂i + 1/2) where b̂

(†)
i is the boson annihilation
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(creation) operator for the bath oscillator with frequency ωi. Linear coupling

between the solute coordinate Q̂ and the bath coordinates is introduced:

ĤSB = Q̂
∑
i

gi(b̂
†
i + b̂i)/

√
2 (6)

where gi measures the strength of the coupling between Q̂ and the i-th bath

coordinate, usually defined in terms of the spectral density I(ω) =
∑

i |gi|2δ(ω−

ωi). Here we consider a constant spectral density I(ω) = ℏ2γ/π, so that a single

parameter fully describes the coupling between the system and the bath.

The solvent relaxation can be described by the Smoluchowski equation, that

is coupled to the Redfield relaxation in the following quantum-classical master

equation:

∂

∂t
σab(F ; t) =− iωabσab(F ; t) +

∑
cd

Rab,cdσcd(F ; t)

− F

iℏ
∑
c

(ρacσcb(F ; t)− σac(F ; t)ρcb)

− εor
τl

∑
c

(
ρac

∂σcb(F ; t)

∂F
+
∂σac(F ; t)

∂F
ρcb

)
+

1

τl

∂

∂F

(
Fσab(F ; t) + kBT2εor

∂

∂F
σab(F ; t)

)
(7)

where σab(F ; t) is the F -dependent density matrix written on the basis of the

eigenstates of the molecular Hamiltonian in Eq. 1. The first line in the above

equation describes the Liouvillian dynamics, with ωab being the frequency of

the b → a transition, and the Redfield relaxation. The second and third lines

describe the effect of the solvent on the solute and vice versa, and the last line

accounts for the Smoluchowski dynamics of the solvent (with kB the Boltzmann

constant and T the temperature). The longitudinal relaxation time τl is charac-

teristic of the environment and the values for the most common organic solvents

are well known and reported in literature.

When mixing quantum and classical dynamics, problems may arise with the

dynamics not obeying the detailed balance rule. To address the issue, we neglect

the off-diagonal matrix elements of ρ̂ in the second and third line of eq. 7. With

17



this approximation, the master equation becomes:

∂

∂t
σab(F ; t) =− iω̃ab(F )σab(F ; t) +

∑
cd

Rab,cdσcd(F ; t)

− εor
τl

∂σab(F ; t)

∂F
(ρaa + ρbb)

+
1

τl

∂

∂F

(
Fσab(F ; t) + kBT2εor

∂

∂F
σab(F ; t)

) (8)

Quite interestingly, this equation describes a Liouvillian dynamics where the

frequency of the b→ a transition is renormalized to account for solvatochromic

effects: ω̃ab(F ) = ωab − F
ℏ (ρaa − ρbb).

Eq. 8 is exploited to describe the relaxation of an excited molecule in a polar

environment upon impulsive excitation. At the equilibrium, we have a collec-

tion of molecules, each one experiencing a different reaction field, distributed

according to the Boltzman law. To simulate the initial state, we diagonalize

the F -dependent Hamiltonian for the solvated molecule in Eq. 2 on a grid of F

values, to obtain the F -dependent eigenstates |ψi(F )⟩. The equilibrium solvent

distribution is calculated as w(F, t = 0) = exp(−E1(F )/kBT ), where E1(F )

is the lowest eigenstate (the only populated state at the equilibrium). Upon

impulsive excitation, the solvent distribution is unaffected, but for each F , the

molecule is driven in the coherent state

|Ψ∗(F )⟩ =
N∑
i=2

|ψi(F )⟩⟨ψi(F )|µ̂|ψ1(F )⟩ (9)

Each |Ψ∗(F )⟩ is then rotated on the basis of the eigenstates of the F-independent

(i. e. gas phase) molecular Hamiltonian in eq. 1 and finally the initial state for

the dynamics is obtained as σ̂(F, 0) = w(F, 0)|Ψ∗(F )⟩⟨Ψ∗(F )|.

The emission spectrum at time t′ after the impulsive excitation is calculated

defining the initial generating function as Ω̂f (F ; t − t′, t′) = µ̂σ̂(F ; t′), where

σ̂(F ; t′) is the system reduced density matrix at time t′ obtained integrating

equation 8. Time evolution of Ω̂f (F ; t− t′, t′) is evaluated according to equation

7 (using the whole ρ̂ operator) and the dipole-dipole correlation function is

obtained as Cf
µµ(t − t′, t′) = ⟨µ̂(t − t′)µ̂(t′)⟩ = TrS

[∫
dF µ̂′Ω̂f (F ; t− t′, t′)

]
where µ̂′ is the lower triangle of the dipole moment operator, that allows to

extract only the emission contribution. The emission spectrum at t′ is obtained
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as the power spectrum of the Fourier transform of Cf
µµ(t− t′, t′) (damped with

an exponential decay e−t/a, a = 30 fs is used here).

The relaxation of the coherently excited state is evaluated integrating eq. 8

with the Short-Iterative-Arnoldi algorithm with a time-step of 1.5 fs and with

a Krylov space of dimension 20. A full Redfield approach is adopted, meaning

that all the terms of the four dimensional Redfield tensor Rab,cd are accounted

for. We set the temperature to 298 K and γ = 5 ps−1. Time resolved emission

spectra are calculated integrating in the same conditions (i. e. temperature,

dimension of the Krylov space etc...) eq 7 (with a time step of 0.15 fs.

We simulate the time evolution of emission spectra of NR in chloroform and

DMF. We adopt the same model parameters (including the solvent relaxation

energies) adopted to simulate steady-state spectra (see Fig. 2 and 3 main text).

The only additional parameter entering the calculation of time-resolved spectra

is the longitudinal relaxation time of the solvent, τl, and it is taken from litera-

ture data. Calculated time-resolved spectra of NR in chloroform and DMF are

shown in the top panels of Fig. 9 (main text). The very good agreement with

experiment validates the theoretical approach.

3 The model: dyes in solid matrices

3.1 Steady state spectra

To address the dye photophysics in solid matrices, we first estimate relevant re-

laxation energies from steady state-spectra. Absorption and Raman spectra are

simulated adopting the same approach as for liquid solvents, in the hypothesis

that the matrix is equilibrated to the ground state molecular polarity. Accord-

ingly, we can estimate relevant matrix relaxation energies. Fig. 8 in main text

and fig. S11 show results obtained for NR and DCM, respectively.

Emission spectra are more problematic. Indeed, it is not possible to repro-

duce experimental emission spectra neither considering a liquid environment, i.e.
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assuming complete relaxation of the environment around the excited dye, nor

considering the environment frozen at the ground state equilibrium. In the first

hypothesis, we would get a too large red-shift of emission, while, in the second

hypothesis, the emission spectrum would be largely blue shifted vs experiment.

Following a recent and somewhat crude approximation, we consider two differ-

ent contributions to polar solvation: a dynamical contribution with fast enough

dynamics as to be equilibrated to the dye excited state before emission takes

place, and a static contribution, that can be considered frozen at the ground

state equilibrium in the timescale relevant to the emission process. A reaction

field and a corresponding relaxation energy are assigned to the two components

so that the Hamiltonian that describes the dye inside a matrix reads:

Ĥ = Ĥmol − Fstatρ̂+
F 2
stat

4ϵstat
− Fdynρ̂+

F 2
dyn

4ϵdyn
. (10)

Steady state emission spectra are finally calculated considering the Boltzmann

distribution relevant to the ground state over Fstat and the one relevant to

the excited state over Fdyn. Results for matrices are reported in the bottom

panels of Fig. 8 (main text) and of fig. S11 for NR and DCM, respectively.

The position of the absorption spectrum only depends on the total amount of

coupling εor = εstat+εdyn, while the position of the emission spectrum depends

also on the relative magnitude of the two relaxation energies.

3.2 Time-resolved spectra

Equations 7 and 8 can be extended to account for the interaction with the

two fields Fstat and Fdyn. We then use our dynamical model to simulate time-

resolved emission in mCBPCN and DPEPO. The dynamical component of the

reaction field is associated with a time-dependent relaxation time τl = a+ b(1−

e−ct), where a, b and c are adjustable parameters. Best results are obtained for

a = 100 ps, b = 14.9 ns and c = 0.0007 ps−1 for DPEPO and a = 20 ps, b = 5

ns and c = 0.001 ps−1 for mCBPCN. Experimental data suggest for mCBPCN

the presence of an initial very fast (<1 ps) relaxation, we therefore introduce

in the first stage of the dynamics a very fast relaxation time: for the first 300

fs we consider a relaxation time of 500 fs, that is then switched off. In a first
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approximation, this is equivalent to splitting the dynamical coordinate in two:

Fdyn1 with τl = 500 fs and Fdyn2 with τl(t).

Results in the bottom panels of Fig. 9 in main text are obtained. The first

1.5 ps of the main dynamics is calculated exactly as done for the solvents (initial

coherent state, full Redfield, dimension of Krylov space 20 etc), and this allows

to see the oscillations of the spectrum in the first hundreds of femtoseconds

reflecting the fast coherent vibrational relaxation towards the Kasha state. Since

with these dynamics we want to reach very long times (<ns) and the presence

of two classical fields makes the calculation very demanding, the second part of

the dynamics (from 1.5 ps on) is calculated evolving just the populations. The

calculation significantly speeds up since we have to evolve just the N diagonal

elements of the density matrix and not the wholeN2 matrix elements. Moreover,

evolving just the populations allows to drastically reduce the dimension of the

Krylov space required by the SIA algorithm to 3. This approximation is reliable

since coherences definitely suppressed after 1.5 ps.
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