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Method for eliminating signal interferences: 

The geomagnetic field and human motion artifacts are sources of interferences that affect magnetic 

signals. The Kabsch algorithm is a method utilized for computing the optimal rotation matrix that 

minimizes the root mean squared deviation between two corresponding sets of points. 1 In this 

particular study, the rotation matrix between the working magnetometer coordinates (X, Y, and Z 

in Fig. S1a) and the reference magnetometer coordinates (x, y, and z in Fig. S1b) was computed. 

Initially, the two magnetometers were affixed to the temporal bones, while the magnetic skin was 

not attached. Data collection was first performed without the magnetic skin to calculate the rotation 

matrix necessary for rotating the data from the reference magnetometer coordinate into the 

working magnetometer coordinate. The acquired data from the working and reference 

magnetometers (without magnetic skin) can be represented as matrix 𝑷 and matrix 𝑸, respectively, 

as shown in Equations S1 and S2.  

 

𝑷 = [

𝑋1 𝑌1 𝑍1

𝑋2 𝑌2 𝑍2

⋮ ⋮ ⋮
𝑋𝑛 𝑌𝑛 𝑍𝑛

]                                                                  (S1) 

𝑸 = [

𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

⋮ ⋮ ⋮
𝑥𝑛 𝑦𝑛 𝑧𝑛

]                                                                  (S2) 

 

where the first, second, thirds columns of 𝑷  𝑸  are the data points for the X/x, Y/y, and Z/z 

directions, respectively.  

 

The first step is the translation. All the data points of 𝑷 were subtracted from the average of the 

whole column. The same procedure was also applied to 𝑸 . The second step involves the 

computation of the covariance matrix 𝑯 as described by Equation S3. 

 

𝑯 = 𝑸𝑇𝑷                                                                       (S3) 

 

The third step is using singular value decomposition (SVD) to calculate the optimal rotation matrix. 

In this step, the SVD of 𝑯 was first conducted. The equation for SVD is shown in Equation S4. 
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𝑯 = 𝑼𝚺𝑽𝑇                                                                     (S4) 

 

where 𝚺 denotes the diagonal matrix of which the singular value is equal to 𝑯. 𝑼 and 𝑽 are the left 

and right singular vectors for the corresponding singular values. The SVD can be performed using 

the numpy.linalg.svd function in the Python numpy package. 

 

Then, the optimal rotation matrix can be calculated by Equation S5. 

𝑹 = 𝑽𝑼𝑇                                                                       (S5) 

 

Finally, the noise induced by interferences can be removed using Equation S6. 

𝑷𝒅𝒆𝒏𝒐𝒊𝒔𝒆 = 𝑷 − 𝑹𝑸                                                             (S6) 

 

Fig. S18 depicts the denoising process utilizing the Kabsch algorithm. Initially, signals were 

collected during the subject's motion, as shown in Fig. S18a. The root sum square analysis (Fig. 

S18b) demonstrates that noise levels for both the working and the reference magnetometers are 

highly similar, indicating that appropriate rotations can effectively eliminate the noise. Fig. S18c 

presents the original signals captured by the working magnetometer and signals obtained from the 

reference magnetometer after applying the rotation. Notably, these two sets of signal patterns 

exhibit high similarity. Subsequently, by subtracting magnetic signals captured by the reference 

magnetometer from signals captured by the working one, the influence of noises on the magnetic 

signals detected by the working magnetometer can be significantly reduced, as depicted in Fig. 

S18d.  
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Table S1. Comparison of various silent speech systems based on contact-based approaches. 

Method Algorithm Language 
Soft/Rigid 
sensing 

interface 

Sensor 

amount 

Classificati

on task 

Recogniti
on 

Accuracy 

Number 
of 

Classes 

Natural 

speech 

Interface 

location 

Magnetic signal 
[This work] LDA English Soft 1 

Phoneme/

Word/Phra

ses/Extend
ed word 

list 

93.2%/ 

93.5% 

96.7% 

85.7% 

9/8/6/54 Yes SRT 

Pressure2 
Morse code 

related 
English Soft 1 Alphabet 95% 26 No Throat 

Strain3 SVM English Soft 5 Alphabet 98.63% 11 No Hand 
Strain4 RNN English Soft 4 Word 85.2% 5 Yes Face 

Strain5 RF English Soft 1 Word 86.0% 11 Yes Face 

Strain6 DTW 
English 

Chinese 
Soft 5 Word 80% 8 Yes Face 

Strain7 DNN English Soft 4 Word 87.5% 100 Yes Fac 
Strain8 CNN English Soft 8 Word 84.4% 21 Yes Face 

EMG9 
LDA  

SVM 
English Soft 8 Word 94.8% 11 Yes 

Face 

Neck 

EMG10 WPT English Soft 4 Word 92.6% 110 Yes Face 

EMG11 WPT English Soft 3 Word 89.04% 6 Yes 
Face, 
Neck 

Strain12 RNN 
English 

Chinese 
Soft 2 Word 94.5% 20 Yes Face 

EPG13 HMM English Soft 124 Word 97.0% 107 Yes 
Oral 

palate 

Proximity signal 
14 

CNN, 

LSTM, 

CTC 

English Rigid 2 Word 90.0% 32 Yes Ear canal 

Angular 
velocity, 

Acceleration 
15, 16 

Particle filter English Rigid 2 
Phoneme/

Word 

95.1%/ 

91.0% 
9 Yes TMJ 

EMG17 CNN English Rigid 7 Word 92.0% 42 Yes 
Face, 

Neck 

EMG18 KALDI English Rigid 8 Word 89.7% \ Yes 
Face, 

Neck 

Magnetic 

signal19, 20 
RNN English Rigid 4 Word 92.0% \ Yes 

Lips, 

Tongue 

Magnetic 
signal, 

Proximity signal 
21 

HMM English Rigid 3 Word 90.5% 11 Yes 
Tongue, 

Ear canal 

EEG22 k-NN English Rigid 128 Phoneme 68.8% 2 Yes Head  

EEG  
MEG23 

Least 
squares 

English Rigid 164 Word 90.0% 7 Yes Head  

Note: The blue part in the table is for rigid sensing interfaces, while the black part is for soft 

interfaces. Articles in these two parts are ranked based on the unobtrusiveness from high to low, 

respectively. The word list and extended word list contain word pairs with similar pronunciations. 

The word classification accuracy of this work indicated in the table is the result for the drone 

control words. The Extended list is the word list containing 54 words. Skin between ramus and 

temporal (SRT); Temporomandibular joint (TMJ); Electromyography (EMG); 

Electropalatography (EPG); Linear discriminant analysis (LDA); Support vector machine (SVM); 

Dynamic time regularization (DTW); Wavelet packet tree (WPT); Convolutional neural networks 

(CNN); Deep neural network (DNN); Recurrent neural network (RNN); Gaussian mixture models 

(GMM); Long short-term memory networks (LSTM); Connectionist temporal classification 
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(CTC); Frequency shift detection model (FSDM); Hidden Markov model (HMM); Bidirectional 

long-short term memory networks (BiLSTM); Random forests (RF). k-nearest neighbors 

algorithm (k-NN)   
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Table S2. Selected words with similar pronunciations under each viseme group including ‘bilabial’, 

‘alveolar’, ‘velar’, ‘labiodental’, ‘palato-alveolar’, ‘dental’, ‘retracting-spread’, ‘spread’, ‘neutral’, 

‘protruding-rounded’, ‘rounded’, and ‘closed’. Detailed viseme pictures can be seen in references. 

9, 24 

Bilabial Alveolar Velar 

Pay Bay Tea Sea Kay Gay 

Labiodental Palato-alveolar Dental 

Fan Van Choke Joke Thin Then 

Retracting-spread Spread Neutral 

Way Sheep Ship Bite But 

Protruding-rounded Rounded Closed 

Bird Book Boat # 
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Table S3. Silent speech recognition accuracies for five subjects. 

Subject No. Accuracies for nine phonemes 
Accuracies for a list of words 

containing similar words 

1 92.7% 85.6% 

2 92.4% 88.1% 

3 94.4% 89.7% 

4 89.6% 84.5% 

5 96.7% 88.4% 

Average 93.2% 87.3% 

Standard Deviation 2.62% 2.14% 
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Table S4. Silent speech recognition accuracy of the first subject using models trained by various 

data sets. 

Training data set Testing data set Recognition accuracy 

Subject 2 Subject 1 3.7% 

Subjects 2, 3 Subject 1 8.2% 

Subjects 2, 3, 4 Subject 1 6.2% 

Subjects 2, 3, 4, 5 Subject 1 9.7% 
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Table S5. Features for the classification. 

Features Formulas 

Time domain 

Mean (𝑥̅) 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

  

Standard deviation (𝜎) 𝜎 = √
1

𝑛
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 

Max Max value 

Min Min value 

25th percentile (𝑃25) 𝑃25 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 
25

100
(𝑛 + 1)𝑡ℎ 𝑖𝑡𝑒𝑚 

50th percentile (𝑃50) 𝑃50 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 
50

100
(𝑛 + 1)𝑡ℎ 𝑖𝑡𝑒𝑚 

75th percentile (𝑃75) 𝑃75 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 
75

100
(𝑛 + 1)𝑡ℎ 𝑖𝑡𝑒𝑚 

Skew (𝜇3) 𝜇3 =
∑ (𝑥𝑖 − 𝑥̅)3𝑛

𝑖

(𝑛 − 1)𝜎3
 

Kurtosis (𝐾𝑢𝑟𝑡) 𝐾𝑢𝑟𝑡 =
𝜇4

𝜎4
 

Root mean square (𝑅𝑀𝑆) 𝑅𝑀𝑆 = √
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

 

Covariance of x and y directions (𝑐𝑜𝑣𝑥,𝑦) 𝑐𝑜𝑣𝑥,𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖

𝑛 − 1
 

Covariance of y and z directions (𝑐𝑜𝑣𝑦,𝑧) 𝑐𝑜𝑣𝑦,𝑧 =
∑ (𝑦𝑖 − 𝑦̅)(𝑧𝑖 − 𝑧̅)𝑛

𝑖

𝑛 − 1
 

Covariance of x and z directions (𝑐𝑜𝑣𝑥,𝑧) 𝑐𝑜𝑣𝑥,𝑧 =
∑ (𝑥𝑖 − 𝑥̅)(𝑧𝑖 − 𝑧̅)𝑛

𝑖

𝑛 − 1
 

Frequency domain 

The real part of the first eight coefficients of 

the discrete Fourier transform (𝑋𝑘) 
𝑋𝑘 = ∑ 𝑥𝑖𝑒

−
𝑗2𝜋

𝑛 𝑘𝑖

𝑛−1

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 0, ⋯ ,7 
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Note: 𝑛 represents the number of data points. 𝑥𝑖 represents the value of each data point. In the 

covariance calculation, 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖  represent values of data points in x, y, and z directions 

respectively. 𝑗 represents the imaginary unit √−1. 𝑘 represents the frequency index.   
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Fig. S1. Placement of the silent speech interface. a) Position of the working magnetometer and the 

magnetic skin. b) Position of the reference magnetometer. c) Structure of the human head skeleton 

and the position of the magnetometer and the magnetic skin. d) Structure of the mandible. Fig. S1c 

and Fig. S1d were reproduced from the web page25 with permission. 
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Fig. S2. Setup for measuring magnetic flux density changes under strain. a) Illustration of the 

relative position of each part corresponding to Fig. 3l. Not true to scale. b) Photographs of the 

complete wireless data acquisition system and the magnetometer inside.  
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Fig. S3. Repeatability and reliability of the magnetic skin. a) Magnetic flux density changes along 

three directions during repeated stretching/releasing cycles. B) Results for the 400th – 420th 

stretching/releasing cycles as examples. 
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Fig. S4. Photographs of the rigid magnet. a) Photograph of eight rigid magnets (shown in the insert) 

attached to the PLA support. b) Dimension and inner structure. 
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16 

 

Fig. S5. Time series signals and signals after differentiation for subject 1. Time series signals of 

the nine phonemes from a) XXX sample, c) YYY sample, e) ZZZ sample, and g) rigid magnet. 

The signals are normalized by dividing all values by 30 T. Time-series signals of the nine 

phonemes after differentiation from b) XXX sample, d) YYY sample, f) ZZZ sample, and h) rigid 

magnet. The signals after differentiation are normalized by dividing all values by 150 T/s.   
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Fig. S6. Confusion matrix of the extended word list for the first subject.  
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Fig. S7. Micro-average ROC curve of the extended word list for the first subject  
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Fig. S8. Classification results for the first subject using the rigid magnet. Confusion matrix (a) and 

micro-average ROC curve (b) for nine phonemes. 
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Fig. S9. Classification results for the first subject under noisy environments. Confusion matrix 

(a) and micro-average ROC curve (b) for nine phonemes. 
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Fig. S10. Classification results for the first subject under dark environments. Confusion matrix 

(a) and micro-average ROC curve (b) for nine phonemes. 
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Fig. S11. Classification results of signals before and after calibration for the first subject during 

walking. Confusion matrix (a) and micro-average ROC curve (b) for signals corresponding to nine 

phonemes after calibration. Confusion matrix (c) and micro-average ROC curve (d) for signals 

corresponding to nine phonemes before calibration. 
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Fig. S12. Device variations and the influence on the recognition accuracy. a) Magnetic flux density 

changes during stretching/releasing cycles obtained using two different devices. b) Confusion 

matrix for the first subject when adding new data training set acquired from different devices. 
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Fig. S13. Classification results for the second subject. Confusion matrix (a) and micro-average 

ROC curve (b) for nine phonemes. Confusion matrix (c) and micro-average ROC curve (d) for a 

list of words containing word pairs with similar pronunciations (from the same viseme group). 
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Fig. S14. Classification results for the third subject. Confusion matrix (a) and micro-average 

ROC curve (b) for nine phonemes. Confusion matrix (c) and micro-average ROC curve (d) for a 

list of words containing word pairs with similar pronunciations (from the same viseme group). 
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Fig. S15. Classification results for the fourth subject. Confusion matrix (a) and micro-average 

ROC curve (b) for nine phonemes. Confusion matrix (c) and micro-average ROC curve (d) for a 

list of words containing word pairs with similar pronunciations (from the same viseme group). 
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Fig. S16. Classification results for the fifth subject. Confusion matrix (a) and micro-average 

ROC curve (b) for nine phonemes. Confusion matrix (c) and micro-average ROC curve (d) for a 

list of words containing word pairs with similar pronunciations (from the same viseme group). 
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Fig. S17. 3D-printed molds for magnetization. a) Mold for the magnetization in the z-direction. b) 

Mold for the magnetization in the x and y directions. 
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Fig. S18. DIC system. a) Camera setup. b) Calibration pad. 
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Fig. S19. Mask with randomly shaped patterns for the DIC measurement. a) Patterns in DXF 

format generated by MATLAB. b) Photograph of the final mask. 
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Fig. S20. Process of painting randomly shaped dots on the facial skin. a) Painting clown white on 

the facial skin. b) Attaching the mask to the clown white and spray-coating black paint. c) Using a 

marker pen to add dots and fill in the remaining blank areas. d) Final appearance. 
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Fig. S21. Process of finding the rotation matrix between the working magnetometer coordinate 

and the reference magnetometer coordinate. a) Acquired signals during the subject’s motion. b) 

Root sum square of the signal. c) Signals after a coordinate transformation. d) Signals before and 

after calibration.  
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