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Theoretical calculations

Density functional theory (DFT) calculations were performed within the Vienna Ab 

initio Simulation Package (VASP)1, 2. The interaction between core electrons and ions 

was described by a projector truncated wave (PAW) with a truncation energy of 400 eV, 

and the k point in the Brillouin region was set to 3×3×1. The generalized gradient 

approximation (GGA) functional of Perdew-Burke-Ernzerhof (PBE) functional was 

applied as the exchange-correlation functional. The vacuum layer in the z-axis direction 

was set to 15 Å to avoid the interaction between periodical images. In the calculation 

process, the convergence standard of energy and force were 10-5 eV and 0.02 eV Å-1, 

respectively. Based on previous work3-6, Graphene (001) was used to simulate a small 

plane of carbon nanotubes. The carbon nanotube with replacing a C atom by a N atom, 

as a model, served as the nitrogen-doped carbon nanotube. According to previous 

reports7, 8, the Co cluster was simulated by multiple Co atoms. Based on the Co NCNTs 

model, an N atom was adsorbed to the Co cluster to construct the N-Co NCNTs model 

because Co and N are connected through the Co-N bond. The dimensions of the N-Co 

NCNTs and Co NCNTs supercell are both 9.840 × 9.840 × 18.40 Å3 and the angles of 

N-Co NCNTs and Co NCNTs models are both 90 degrees × 90 degrees ×120 degrees. 

The free energies of H2, H2O, and O2 were collected from previous works9-11. The 

reaction Gibbs free energies of alkaline OER four elementary steps were described as 

follows:
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where * denotes the surface bound species. For HER, the Gibbs free-energy (ΔGH*) 

was expressed as: , where EZPE is the zero energy, ∆S is the 
∆𝐺

𝐻 ∗ =  ∆𝐸
𝐻 ∗ +  ∆𝑍𝑃𝐸－𝑇∆𝑆

entropy change, and T is the system temperature (298.15K, in our work). 

Figures and Tables:

Fig S1. XRD spectra of the Co(II) carbonate hydroxide.
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Fig S2. XRD spectra of the catalysts with different amount of urea.

Fig S3. SEM images of Co NCNTs.

Fig S4. SEM image of N-Co NCNTs obtained at (a) 600 ℃ and (b) 800 ℃.
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Fig S5. SEM image of sea urchin-like Co (II) carbonate hydroxide.

Fig S6. Raman spectra of N-Co NCNTs and Co NCNTs.

Fig S7. The N2 adsorption–desorption isotherm and pore-size distribution (inset) of Co NCNTs.
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Fig S8. The XPS survey spectrum of N-Co NCNTs and Co NCNTs.

Fig S9. High-resolution C 1s spectra of Co NCNTs and N-Co NCNTs.

Fig S10. High-resolution O 1s spectra of Co NCNTs and N-Co NCNTs.
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Fig S11. OER polarization curves of N-Co NCNTs, Co NCNTs, Co-NCNTs, Co NP, RuO2 and 

NCNTs.

Fig S12. LSV polarization curves of N-Co NCNTs at different annealing times.
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Fig S13. LSV polarization curves of N-Co NCNTs at different annealing temperatures.

Fig S14. LSV polarization curves of N-Co NCNTs with different amount of urea.
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Fig S15. Cyclic voltammetry curves for the HER (a,b) and for the OER (c,d).

Fig S16. Time-dependent current density curve of Co NCNTs for OER in alkaline solution.
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Fig S17. HER polarization curves of N-Co NCNTs, Co NCNTs, Co-NCNTs, Co NP, Pt/C and 

NCNTs.

Fig S18. Time-dependent current density curve of Co NCNTs for HER in alkaline solution.
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Fig S19. (a) Hydrogen volume for Faraday efficiency experiment of HER. (b) Faraday efficiency 

of N-Co NCNTs for HER.

Fig S20. Stability testing of Co-NCNTs.
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Fig S21. Theoretical models for N-Co NCNTs (a) and Co-NCNTs (b).

Fig S22. Adsorption energies of H2O adsorption on N-Co NCNTs (a) and Co NCNTs (b).

Fig S23. Adsorption model of H* intermediates of N-Co NCNTs (a) and Co NCNTs (b).
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Fig S24. Optimization models for intermediates of N-Co NCNTs (a) and Co NCNTs (b) in OER.

Fig S25. Charge Density difference of N-Co NCNTs.
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Table S1. Comparison of the recently-reported cobalt based catalysts for overall water splitting.

Catalysts Electrolyte (KOH) η10 (V) Durability (h) Ref.

N-Co NCNTs|| N-Co NCNTs 1.0 1.53 100 This work

CoTe2/CoP 1.0 1.55 30 12

Co5.47N/MoN 1.0 1.59 16 13

VCoCOx@NF 1.0 1.54 70 14

Co/CoO@NC@CC 1.0 1.66 25 15

CoSe2/CNTs 1.0 1.75 24 16

Part-Ph Co@Co–P@NPCNTs 1.0 1.63 24 17

NiCo2Px/CNTs 1.0 1.61 48 18

Co-NCNTFs/NF 1.0 1.62 10 19

CoFe@N-CNTs-800 1.0 1.64 20 20
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