Supporting Information

Pushing the limits of the heat of detonation via the construction of polynitro bipyrazole

Yaqun Dong, ^{‡a} Miao Li, ^{‡a} Jing Liu,^a Yuji Liu,^a Wei Huang,^a Jean'ne M. Shreeve,^b

Yongxing Tang*a

[a] School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. E-mail: <u>yongxing@njust.edu.cn</u>.

[b] Department of Chemistry, University of Idaho, Moscow, Idaho, 83844-2343, USA.

[[‡]] These authors contributed equally to this work.

Table of Contents

1. General methods	S3
2. Isodesmic reactions	S4
3. Experimental section	
4. Crystal structure data	S7
5. NMR spectra	S18
6. DSC plots	S22

1. General methods

¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III 300 MHz nuclear magnetic resonance spectrometer. DMSO-*d*₆ or CD₃COCD₃ or CDCl₃ was used as solvent and locking solvent. The working frequencies for ¹H and ¹³C are 300 MHz and 75 MHz, respectively. Chemical shifts were reported relative to tetramethylsilane as internal standard. Decomposition temperatures (onset) were obtained on a TA Instruments DSC25 differential scanning calorimeter at a heating rate of 5 °C min⁻¹. Infrared spectra (IR) were recorded on a PerkinElmer Spectrum BX FT-IR instrument equipped with an ATR unit at 25 °C. Elemental analyses of C/H/N were performed on a Vario EL III Analyzer. Impact and friction sensitivities were measured with a BAM fallhammer and friction tester. X-ray intensity data were collected on a Bruker D8 VENTURE PHOTON II system equipped with an Incoatecius 3.0 Microfocus sealed tube. The structures were solved and refined using Bruker SHELXTL Software Package. The data were refined against F². All non-hydrogen atoms were refined anisotropically. *Notes:* for crystal structure of **4**, the APEX2 software package was used to analyze the data and found the data was twinned. We did the de-twin treatment and refined with HKLF4 files.

2. Isodesmic reactions

3. Experimental section

Caution! All new compounds in this work are potentially energetic materials that could explode under certain conditions, such as impact, friction and high temperature. Although there were no explosions during this work, appropriate safety precautions must be taken (safety glasses, face shields, earplugs, and gloves).

Synthesis of dipyrazolo[1,5-*a*:5',1'-*c*]pyrazine (2)

2H,2'H-3,3'-Bipyrazole (1.34 g, 10 mmol) was dissolved in DMF (10 mL) at room temperature, then Cs₂CO₃ (6.51 g, 20 mmol) was added in portions. Then 1,1-dichloroethylene (0.97 g, 10 mmol) was added and the reaction mixture was heated to 120 °C for 24 h. It was cooled to room temperature and extracted with ethyl acetate (50 mL × 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 2:1) to give **2**. It is suitable to use this residue without purification in the next nitrification reaction.

2: Yellow solid (0.32 g, yield: 20%). ¹H NMR (300 MHz, CDCl₃): δ 7.88 (d, J = 2.1 Hz, 2H), 7.75 (s, 2H), 6.74 (d, J = 2.1 Hz, 2H) ppm; ¹³C NMR (76 MHz, CDCl₃): δ 141.9, 131.3, 114.5, 99.5 ppm; IR (KBr pellet): v 3091, 1767, 1761, 1583, 1519, 1381, 1180, 929, 747, 635 cm⁻¹. Elemental analysis: calcd for C₈H₆N₄ (158.16): Calcd C 60.75, H 3.82, N 35.42; found: C 60.98, H 3.73, N 35.17.

Synthesis of 1,10-dinitrodipyrazolo[1,5-*a*:5',1'-*c*]pyrazine (3)

To a mixture of sulfuric acid (98%, 2 mL) and nitric acid (100%, 1 mL) was added compound **2** (270 mg, 1.7 mmol) at 0 °C. The reaction mixture was stirred at 15 °C for 4 h. Then it was poured into ice water (50 mL), and the white precipitate was collected and dried by air.

3: White solid (0.35 g, yield: 83 %). ¹H NMR (300 MHz, *d*₆-DMSO): δ 8.96 (s, 2H), 8.72 (s, 2H) ppm;

¹³C NMR (76 MHz, *d*₆-DMSO): δ 139.6, 130.2, 124.5, 118.5 ppm; IR (KBr pellet): *v* 3108, 1504, 1388, 1328, 1218, 903, 829, 779, 746, 637, 584 cm⁻¹. Elemental analysis: calcd for C₈H₄N₆O₄ (248.16): Calcd C 38.72, H 1.62, N 33.87; found: C 38.87, H 1.59, N 33.47.

Synthesis of 2'-(dinitromethyl)-1,4,4'-trinitro-1H,2'H-3,3'-bipyrazole (4)

To a mixture of sulfuric acid (98%, 2 mL) and nitric acid (100%, 1 mL) was added compound **2** (270 mg, 1.7 mmol) at 0 °C. The reaction mixture was warmed to 35 °C and stirred for 1 h. Then it was poured into ice water (50 mL), and the white precipitate was collected and dried by air.

4: White solid (0.5 g, yield:79%). ¹H NMR (300 MHz, *d*₆-DMSO): δ 10.25 (s, 1H), 8.79 (s, 1H) ppm; ¹³C NMR (76 MHz, *d*₆-DMSO): δ 137.9, 135.6, 133.8, 132.5, 131.7, 131.4, 128.1 ppm; IR (KBr pellet): *v* 3235, 3148, 1516, 1388, 1317, 1199, 1078, 929, 802, 750, 610 cm⁻¹. Elemental analysis calcd for C₇H₃N₉O₁₀ (373.15): Calcd C 22.53, H 0.81, N 33.78; found: C 22.32, H 0.89, N 34.01.

Synthesis of 1,4,4'-trinitro-2'-(trinitromethyl)-1H,2'H-3,3'-bipyrazole (5)

To a mixture of sulfuric acid (98%, 2 mL) and nitric acid (100%, 1 mL) was added compound **2** (270 mg, 1.7 mmol) at 0 °C. The reaction mixture was warmed to 35 °C and stirred for 4 h. Then it was poured into ice water (50 mL), and the white precipitate was collected and dried by air.

5: White solid (0.48 g, yield: 67%). ¹H NMR (300 MHz, d_6 -Acetone): δ 10.14 (s, 1H), 9.18 (s, 1H) ppm; ¹³C NMR (76 MHz, d_6 -Acetone): δ 142.8, 140.4, 135.2, 133.3, 131.4, 128.9, 121.6 ppm; IR (KBr pellet): v 3161, 2927, 1670, 1643, 1598, 1547, 1361, 1328, 1281, 1217, 1059, 823, 803, 753 cm⁻¹. Elemental analysis calcd for C₇H₂N₁₀O₁₂ (418.15): Calcd C 20.11, H 0.48, N 33.50; found: C 19.98, H 0.59, N 33.19.

4. Crystal structure data

compound	3	4	5
Empirical formula	$C_8H_4N_6O_4$	C7H3N9O10	$C_7 H_2 N_{10} O_{12}$
Formula weight	248.17	373.18	418.19
Temperature [K]	193.00	273(2)	193.00
Crystal system	triclinic	Monoclinic	monoclinic
Space group	P-1	$P2_1/c$	$P2_1/c$
<i>a</i> [Å]	5.0954(2)	9.144	15.4453(12)
<i>b</i> [Å]	8.4208(4)	12.629	8.5038(5)
<i>c</i> [Å]	11.6907(5)	12.031	12.4151(11)
α [Å]	79.354(3)	90	90
β [Å]	78.910(3)	99.17	113.671(3)
γ [Å]	72.855(3)	90	90
V [Å ³]	465.97(4)	1371.5	1493.5(2)
Ζ	2	4	4
$ ho_{ m calcd} [m Mg{\cdot}m^{-3}]$	1.769	1.807	1.860
μ/mm^{-1}	1.277	1.525	0.179
F(000)	252.0	752	840.0
Crystal size	$0.13 \times 0.12 \times 0.11$	$0.120\times0.100\times0.080$	$0.15 \times 0.13 \times 0.12$
Theta range for data collection	7.778 to 136.446	5.112 to 66.869	5.59 to 54.946
index range	$-6 \le h \le 5, -10 \le k \le 10,$ $-14 \le 1 \le 14$	$?\leq h\leq ?$, $?\leq k\leq ?$, $?\leq l\leq ?$	$\begin{array}{c} -20 \leq h \leq 20, -11 \leq k \leq 10, \\ -15 \leq l \leq 16 \end{array}$
reflections collected	6641	2381	18890
independent reflections (Rint)	$1689 [R_{int} = 0.0454, R_{sigma} = 0.0411]$	2381 $[R_{int} = 0]$	$3416 [R_{int} = 0.0720, R_{sigma} = 0.0478]$
data/restraints/ paraneters	1689/1/163	2381 / 0 / 235	3416/0/262
GOF on F ²	1.093	1.123	1.067
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0596, wR_2 = 0.1762$	$R_1 = 0.0773, wR2 = 0.2110$	$R_1 = 0.0471, wR_2 = 0.1076$
Final R indexes [all data]	$R_1 = 0.0662, wR_2 = 0.1799$	$R_1 = 0.1027, wR2 = 0.2290$	$R_1 = 0.0684, wR_2 = 0.1284$
Largest diff. peak and hole [e Å ⁻³]	0.30/-0.38	0.250/ -0.319	0.43/-0.32
CCDC number	2279507	2279509	2177265

Table S1. Crystal data and structure refinement for 3, 4 and 5.

Table S2. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **3**. Ueq is defined as 1/3 of the trace of the orthogonalized Uij tensor.

	X	У	Z	U(eq)
01	11104(6)	9959(4)	1119(2)	36.9(7)
C1	12051(8)	6576(5)	788(3)	29.3(8)
N1	11996(7)	4988(4)	950(3)	31.6(8)
C2	9790(8)	7547(5)	1463(3)	25.0(8)
N2	9689(7)	4937(4)	1751(3)	26.9(7)
O2	6690(6)	10131(3)	1523(3)	37.6(7)
C3	8254(7)	6473(4)	2097(3)	23.2(8)
N3	5030(7)	5057(4)	3278(3)	26.7(7)
O3	6192(6)	9514(3)	3806(3)	34.7(7)
C4	8852(9)	3479(5)	2129(3)	31.5(9)
		67		

O4	1730(6)	10384(3)	3849(2)	35.1(7)
N4	2650(7)	5215(4)	4064(3)	30.0(7)
C5	6486(9)	3549(5)	2880(3)	30.4(9)
N5	3941(6)	9297(4)	3760(2)	24.4(7)
N6	9131(7)	9326(4)	1383(2)	27.0(7)
C6	5864(7)	6511(4)	2975(3)	22.8(7)
C7	3897(7)	7640(4)	3633(3)	23.4(8)
C8	1974(8)	6804(5)	4275(3)	27.5(8)

Table S3. Bond lengths [Å] and angles $[\circ]$ for 3.

O(1)-N(6)	1.235(4)	N(1)-C(1)-C(2)	111.5(3)
C(1)- N(1)	1.324(5)	C(1)-N(1)-N(2)	104.5(3)
C(1)- C(2)	1.397(5)	C(1)-C(2)-N(6)	124.3(3)
N(1)- N(2)	1.361(4)	C(3)-C(2)-C(1)	106.9(3)
C(2)- C(3)	1.388(5)	C(3)-C(2)-N(6)	128.5(3)
C(2)- N(6)	1.424(5)	N(1)-N(2)-C(3)	113.3(3)
N(2)- C(3)	1.376(4)	N(1)-N(2)-C(4)	122.2(3)
N(2)- C(4)	1.386(5)	C(3)-N(2)-C(4)	124.4(3)
O(2)- N(6)	1.224(4)	C(2)-C(3)-C(6)	139.4(3
C(3)- C(6)	1.431(5)	N(2)-C(3)-C(2)	103.8(3)
N(3)- N(4)	1.362(4)	N(2)-C(3)-C(6)	116.7(3)
N(3)- C(5)	1.382(5)	N(4)-N(3)-C(5)	122.1(3)
N(3)- C(6)	1.377(5)	N(4)-N(3)-C(6)	113.3(3)
O(3)- N(5)	1.226(4)	C(6)-N(3)-C(5)	124.5(3)
C(4)- C(5)	1.341(6)	C(5)-C(4)-N(2)	118.6(3)
O(4)- N(5)	1.225(4)	C(8)-N(4)-N(3)	104.2(3)
N(4)- C(8)	1.337(5)	C(4)-C(5)-N(3)	118.7(3)
N(5)- C(7)	1.437(5)	O(3)-N(5)-C(7)	117.5(3)
C(6)- C(7)	1.383(5)	O(4)-N(5)-O(3)	124.3(3)
C(7)- C(8)	1.395(5)	O(4)-N(5)-C(7)	118.1(3)
		O(1)-N(6)-C(2)	116.6(3)
		O(2)-N(6)-O(1)	124.2(3)

O(2)-N(6)-C(2)

N(3)-C(6)-C(3)

N(3)-C(6)-C(7)

C(7)-C(6)-C(3)

C(6)-C(7)-N(5)

C(6)-C(7)-C(8)

119.1(3)

116.6(3)

104.2(3)

139.2(3)

127.5(3)

107.0(3)

C(8)-C(7)-N(5)	125.0(3)
N(4)-C(8)-C(7)	111.3(3)

1	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
01	39.0(17)	40.6(16)	37.2(16)	-11.0(12)	5.0(12)	-23.0(13)
C1	28(2)	35(2)	22.4(18)	-6.8(15)	2.0(15)	-7.1(16)
N1	31.3(18)	33.8(18)	26.6(16)	-10.5(13)	1.8(13)	-4.1(14)
C2	26.2(19)	27.7(18)	20.5(17)	-4.8(14)	0.2(14)	-7.5(15)
N2	29.4(17)	23.6(15)	25.3(16)	-5.9(12)	0.0(13)	-4.5(12)
O2	31.8(16)	30.6(14)	42.2(16)	-3.4(12)	6.7(12)	-4.5(12)
C3	24.3(18)	25.3(17)	20.2(17)	-6.1(13)	-2.9(14)	-5.3(14)
N3	32.8(18)	24.3(15)	24.3(16)	-1.8(12)	-0.8(13)	-12.5(13)
O3	28.8(15)	36.3(15)	43.1(16)	-10.8(12)	-0.4(12)	-14.6(12)
C4	40(2)	21.3(18)	33(2)	-5.4(15)	-7.5(17)	-4.9(16)
O4	29.1(15)	31.5(14)	38.5(16)	-8.2(12)	-0.7(12)	0.6(12)
N4	28.7(18)	32.4(17)	28.8(16)	-2.0(13)	0.7(13)	-12.5(14)
C5	40(2)	21.3(18)	31(2)	-4.6(15)	-3.4(17)	-10.6(16)
N5	26.3(17)	25.4(15)	19.3(14)	-4.0(11)	2.0(12)	-6.4(13)
N6	32.7(18)	28.1(16)	20.0(15)	-4.9(12)	4.7(12)	-12.4(14)
C6	26.4(18)	22.4(17)	19.9(17)	0.2(13)	-2.6(14)	-9.5(14)
C7	23.7(18)	25.3(18)	20.9(17)	-2.8(13)	-1.5(13)	-7.5(14)
C8	25.5(19)	33(2)	23.3(18)	-1.0(15)	1.1(14)	-11.2(15)

Table S4. Anisotropic displacement parameters (Å² x 10³) for **3**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹+ ... + 2 h k a* b* U¹²].

Table S5. Torsion angles [°] for 3.

C(1)-N(1)-N(2)-C(3)	0.6(4)	N(3)-N(4)-C(8)-C(7)	-0.1(4)	
C(1)-N(1)-N(2)-C(4)	178.0(3)	N(3)-C(6)-C(7)-N(5)	172.1(3)	
C(1)-C(2)-C(3)-N(2)	-0.4(4)	N(3)-C(6)-C(7)-C(8)	-1.0(4)	
C(1)-C(2)-C(3)-C(6)	176.0(4)	O(3)-N(5)-C(7)-C(6)	-37.2(5)	
C(1)-C(2)-N(6)-O(1)	-31.3(5)	O(3)-N(5)-C(7)-C(8)	134.8(4)	
C(1)-C(2)-N(6)-O(2)	145.4(4)	C(4)-N(2)-C(3)-C(2)	-177.4(3)	
N(1)-C(1)-C(2)-C(3)	0.8(4)	C(4)-N(2)-C(3)-C(6)	5.2(5)	
N(1)-C(1)-C(2)-N(6)	-173.2(3)	O(4)-N(5)-C(7)-C(6)	144.8(4)	
N(1)-N(2)-C(3)-C(2)	-0.1(4)	O(4)-N(5)-C(7)-C(8)	-43.2(5)	
N(1)-N(2)-C(3)-C(6)	-177.5(3)	N(4)-N(3)-C(5)-C(4)	-178.3(4)	
N(1)-N(2)-C(4)-C(5)	-177.0(4)	N(4)-N(3)-C(6)-C(3)	-176.2(3)	
C(2)-C(1)-N(1)-N(2)	-0.8(4)	N(4)-N(3)-C(6)-C(7)	1.1(4)	
C(2)-C(3)-C(6)-N(3)	175.8(4)	C(5)-N(3)-N(4)-C(8)	176.6(3)	

C(2)-C(3)-C(6)-C(7)	-0.2(8)	C(5)-N(3)-C(6)-C(3)	6.6(5)
N(2)-C(3)-C(6)-N(3)	-8.1(5)	C(5)-N(3)-C(6)-C(7)	-176.1(3)
N(2)-C(3)-C(6)-C(7)	175.9(4)	N(5)-C(7)-C(8)-N(4)	-172.6(3)
N(2)-C(4)-C(5)-N(3)	-2.2(6)	N(6)-C(2)-C(3)-N(2)	173.3(3)
C(3)-C(2)-N(6)-O(1)	156.0(4)	N(6)-C(2)-C(3)-C(6)	-10.3(7)
C(3)-C(2)-N(6)-O(2)	-27.3(5)	C(6)-N(3)-N(4)-C(8)	-0.6(4)
C(3)-N(2)-C(4)-C(5)	0.1(6)	C(6)-N(3)-C(5)-C(4)	-1.4(6)
C(3)-C(6)-C(7)-N(5)	-11.6(7)	C(6)-C(7)-C(8)-N(4)	0.7(4)
C(3)-C(6)-C(7)-C(8)	175.3(4)		

Table S6. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 4. Useq is defined as 1/3 of the trace of the orthogonalized Uij tensor.

	X	У	Z	U(eq)
C1	1512(5)	5263(4)	2098(4)	73(1)
C2	3017(5)	5035(3)	2131(3)	63(1)
C3	3814(5)	5797(3)	2782(3)	59(1)
C4	5377(4)	5972(3)	3183(3)	57(1)
C5	6650(5)	5946(3)	2639(3)	60(1)
C6	7840(5)	6140(3)	3433(4)	68(1)
C7	2940(5)	7275(3)	3882(4)	65(1)
N1	2750(4)	6448(3)	3099(3)	62(1)
N2	1316(4)	6113(3)	2691(3)	74(1)
N3	2893(5)	6888(3)	5070(3)	78(1)
N4	1683(5)	8074(3)	3571(5)	83(1)
N5	3583(5)	4097(3)	1707(3)	70(1)
N6	5789(4)	6187(3)	4274(3)	61(1)
N7	7270(4)	6275(3)	4383(3)	63(1)
N8	8087(5)	6546(3)	5468(3)	83(1)
N9	6687(5)	5807(3)	1461(3)	72(1)
O1	3257(7)	7535(4)	5799(4)	134(2)
02	2551(5)	5988(3)	5198(3)	93(1)
O3	774(6)	8158(4)	4182(5)	150(2)
O4	1715(5)	8566(3)	2733(4)	102(1)
05	2710(5)	3492(3)	1179(3)	89(1)
O6	4919(4)	3922(3)	1928(3)	89(1)
07	5540(5)	5855(3)	813(3)	99(1)
08	7911(4)	5683(3)	1188(3)	101(1)
09	9407(5)	6519(5)	5515(4)	127(2)

O10	7357(5)	6769(3)	6182(3)	95(1)
Table S7. Bond leng	ths [Å] and angles [°] f	for 4 .		
C(1)-N(2)	1.318(6)]	N(2)-C(1)-C(2)	111.7(4)
C(1)-C(2)	1.401(6)]	N(2)-C(1)-H(1)	124.1
C(1)-H(1)	0.9300	(C(2)-C(1)-H(1)	124.1
C(2)-C(3)	1.375(6)		C(3)-C(2)-C(1)	107.5(3)
C(2)-N(5)	1.419(5)	(C(3)-C(2)-N(5)	126.8(4)
C(3)-N(1)	1.373(5)	(C(1)-C(2)-N(5)	125.1(4)
C(3)-C(4)	1.451(6)]	N(1)-C(3)-C(2)	104.1(4)
C(4)-N(6)	1.335(5)]	N(1)-C(3)-C(4)	121.4(4)
C(4)-C(5)	1.424(5)		C(2)-C(3)-C(4)	134.5(4)
C(5)-C(6)	1.352(6)]	N(6)-C(4)-C(5)	109.5(4)
C(5)-N(9)	1.434(6)]	N(6)-C(4)-C(3)	117.8(3)
C(6)-N(7)	1.340(5)	(C(5)-C(4)-C(3)	132.7(4)
C(6)-H(6)	0.9300	(C(6)-C(5)-C(4)	107.2(4)
C(7)-N(1)	1.398(5)	(C(6)-C(5)-N(9)	125.3(4)
C(7)-N(3)	1.517(6)	(C(4)-C(5)-N(9)	127.4(4)
C(7)-N(4)	1.531(6)]	N(7)-C(6)-C(5)	104.3(4)
C(7)-H(7)	0.9800	1	N(7)-C(6)-H(6)	127.9
N(1)-N(2)	1.391(5)	(C(5)-C(6)-H(6)	127.9
N(3)-O(2)	1.196(5)	1	N(1)-C(7)-N(3)	112.0(3)
N(3)-O(1)	1.207(5)	1	N(1)-C(7)-N(4)	108.7(4)
N(4)-O(4)	1.188(6)	1	N(3)-C(7)-N(4)	108.0(3)
N(4)-O(3)	1.198(5)	1	N(1)-C(7)-H(7)	109.4
N(5)-O(5)	1.209(5)	1	N(3)-C(7)-H(7)	109.4
N(5)-O(6)	1.228(5)]	N(4)-C(7)-H(7)	109.4
N(6)-N(7)	1.345(5)	(C(3)-N(1)-N(2)	113.0(3)
N(7)-N(8)	1.438(5)	(C(3)-N(1)-C(7)	128.1(4)
N(8)-O(9)	1.199(6)	1	N(2)-N(1)-C(7)	118.2(3)
N(8)-O(10)	1.203(5)	(C(1)-N(2)-N(1)	103.7(4)
N(9)-O(7)	1.205(5)	(D(2)-N(3)-O(1)	126.7(4)
N(9)-O(8)	1.225(5)	(D(2)-N(3)-C(7)	118.4(4)
		(D(1)-N(3)-C(7)	114.9(4)
		(D(4)-N(4)-O(3)	126.0(5)
		(D(4)-N(4)-C(7)	115.6(4)
		(D(3)-N(4)-C(7)	118.4(5)
		(O(5)-N(5)-O(6)	123.4(4)

O(5)-N(5)-C(2)	117.9(4)
O(6)-N(5)-C(2)	118.6(4)
C(4)-N(6)-N(7)	103.5(3)
C(6)-N(7)-N(6)	115.5(4)
C(6)-N(7)-N(8)	126.0(4)
N(6)-N(7)-N(8)	118.5(3)
O(9)-N(8)-O(10)	129.9(5)
O(9)-N(8)-N(7)	114.2(4)
O(10)-N(8)-N(7)	115.9(4)
O(7)-N(9)-O(8)	124.8(4)
O(7)-N(9)-C(5)	118.6(4)
O(8)-N(9)-C(5)	116.6(4)

Table S8. Anisotropic displacement parameters (Å² x 10³) for **4**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹+ ... + 2 h k a* b* U¹²].

-

exponent take	U ¹¹	$\frac{U^{11}a + U^{11} + U^{12}}{U^{22}}$	U ³³	U ²³	U ¹³	U ¹²
C(1)	61(3)	68(3)	90(3)	-6(2)	14(2)	-2(2)
C(2)	66(3)	53(2)	72(2)	-4(2)	17(2)	3(2)
C(3)	56(2)	56(2)	66(2)	2(2)	20(2)	6(2)
C(4)	50(2)	54(2)	69(2)	-2(2)	16(2)	1(2)
C(5)	54(2)	63(2)	69(2)	1(2)	25(2)	4(2)
C(6)	65(3)	68(2)	76(3)	3(2)	26(2)	3(2)
C(7)	58(3)	57(2)	84(3)	1(2)	26(2)	2(2)
N(1)	52(2)	57(2)	80(2)	-3(2)	20(2)	0(2)
N(2)	52(2)	71(2)	101(3)	-10(2)	19(2)	-3(2)
N(3)	84(3)	72(2)	86(3)	-8(2)	35(2)	-6(2)
N(4)	71(3)	58(2)	126(4)	-3(2)	36(3)	7(2)
N(5)	78(3)	64(2)	71(2)	-6(2)	26(2)	-2(2)
N(6)	53(2)	62(2)	70(2)	2(2)	18(2)	0(2)
N(7)	56(2)	65(2)	68(2)	1(2)	13(2)	-2(2)
N(8)	82(3)	94(3)	70(2)	6(2)	7(2)	-8(2)
N(9)	71(3)	78(2)	72(2)	0(2)	24(2)	0(2)
O(1)	203(6)	115(3)	96(3)	-39(2)	58(3)	-50(3)
O(2)	115(3)	70(2)	102(2)	10(2)	44(2)	-4(2)
O(3)	124(4)	114(3)	241(6)	40(3)	120(4)	47(3)
O(4)	108(3)	90(3)	107(3)	7(2)	13(2)	23(2)
O(5)	100(3)	74(2)	95(2)	-24(2)	26(2)	-15(2)
O(6)	79(3)	83(2)	106(3)	-16(2)	21(2)	19(2)
O(7)	84(3)	143(3)	72(2)	-2(2)	17(2)	-5(2)

O(8)	84(3)	135(3)	92(2)	7(2)	43(2)	18(2)
O(9)	68(3)	208(5)	101(3)	8(3)	0(2)	-16(3)
O(10)	104(3)	112(3)	71(2)	-4(2)	17(2)	-10(2)

 Table S9. Torsion angles [°] for 4.

8			
N(2)-C(1)-C(2)-C(3)	-0.3(5)	N(1)-C(7)-N(3)-O(2)	-7.9(6)
N(2)-C(1)-C(2)-N(5)	171.0(4)	N(4)-C(7)-N(3)-O(2)	111.7(5)
C(1)-C(2)-C(3)-N(1)	-0.5(4)	N(1)-C(7)-N(3)-O(1)	170.0(5)
N(5)-C(2)-C(3)-N(1)	-171.6(4)	N(4)-C(7)-N(3)-O(1)	-70.4(5)
C(1)-C(2)-C(3)-C(4)	176.0(4)	N(1)-C(7)-N(4)-O(4)	-69.3(5)
N(5)-C(2)-C(3)-C(4)	4.9(7)	N(3)-C(7)-N(4)-O(4)	169.0(4)
N(1)-C(3)-C(4)-N(6)	44.7(5)	N(1)-C(7)-N(4)-O(3)	111.3(5)
C(2)-C(3)-C(4)-N(6)	-131.4(5)	N(3)-C(7)-N(4)-O(3)	-10.4(6)
N(1)-C(3)-C(4)-C(5)	-136.5(4)	C(3)-C(2)-N(5)-O(5)	177.3(4)
C(2)-C(3)-C(4)-C(5)	47.4(7)	C(1)-C(2)-N(5)-O(5)	7.7(6)
N(6)-C(4)-C(5)-C(6)	0.7(5)	C(3)-C(2)-N(5)-O(6)	-0.1(6)
C(3)-C(4)-C(5)-C(6)	-178.2(4)	C(1)-C(2)-N(5)-O(6)	-169.7(4)
N(6)-C(4)-C(5)-N(9)	-175.8(4)	C(5)-C(4)-N(6)-N(7)	-0.7(4)
C(3)-C(4)-C(5)-N(9)	5.3(7)	C(3)-C(4)-N(6)-N(7)	178.4(3)
C(4)-C(5)-C(6)-N(7)	-0.3(4)	C(5)-C(6)-N(7)-N(6)	-0.1(5)
N(9)-C(5)-C(6)-N(7)	176.3(4)	C(5)-C(6)-N(7)-N(8)	-177.3(4)
C(2)-C(3)-N(1)-N(2)	1.2(4)	C(4)-N(6)-N(7)-C(6)	0.6(4)
C(4)-C(3)-N(1)-N(2)	-175.9(3)	C(4)-N(6)-N(7)-N(8)	177.9(3)
C(2)-C(3)-N(1)-C(7)	171.2(4)	C(6)-N(7)-N(8)-O(9)	-9.1(7)
C(4)-C(3)-N(1)-C(7)	-5.9(6)	N(6)-N(7)-N(8)-O(9)	173.9(4)
N(3)-C(7)-N(1)-C(3)	-87.3(5)	C(6)-N(7)-N(8)-O(10)	170.5(4)
N(4)-C(7)-N(1)-C(3)	153.5(4)	N(6)-N(7)-N(8)-O(10)	-6.5(6)
N(3)-C(7)-N(1)-N(2)	82.3(5)	C(6)-C(5)-N(9)-O(7)	-165.0(4)
N(4)-C(7)-N(1)-N(2)	-37.0(5)	C(4)-C(5)-N(9)-O(7)	10.9(6)
C(2)-C(1)-N(2)-N(1)	1.0(5)	C(6)-C(5)-N(9)-O(8)	12.6(6)
C(3)-N(1)-N(2)-C(1)	-1.4(5)	C(4)-C(5)-N(9)-O(8)	-171.5(4)
C(7)-N(1)-N(2)-C(1)	-172.5(4)		

Table S10. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5**. Useq is defined as 1/3 of the trace of the orthogonalized Uij tensor.

	X	У	Z	U(eq)
01	6422.1(12)	3123.1(19)	5118.8(15)	32.7(4)
02	5640.8(12)	1642.1(19)	5848.1(18)	40.5(5)
03	7064.0(13)	1854(2) \$13	8058.2(17)	40.9(5)

O4	7465.0(13)	4228(2)	8716.6(15)	41.3(5)
05	5421.5(14)	4139(2)	8013.2(18)	44.6(5)
06	4633.7(12)	4154(2)	6112.6(18)	41.6(5)
07	8623.6(11)	8312.3(19)	6345.3(17)	34.9(4)
08	7629.6(12)	10156.4(18)	6249.3(17)	37.7(4)
09	8722.6(14)	6113(2)	3965.4(17)	43.5(5)
O10	7443.8(13)	6838(2)	4152.1(15)	39.3(5)
011	9989.9(13)	1205(2)	6798(2)	47.9(5)
012	9486.8(14)	1517(2)	8193(2)	51.1(6)
N1	5956.8(13)	6720(2)	6685.9(17)	25.3(4)
N2	6520.6(12)	5503(2)	6603.1(16)	21.7(4)
N3	6098.2(13)	2794(2)	5828.8(18)	27.4(4)
N4	7023.6(14)	3271(2)	7992.9(17)	29.4(4)
N5	5343.3(14)	4097(2)	7008(2)	30.3(5)
N6	7862.9(13)	8777(2)	6315.2(17)	25.9(4)
N7	8171.2(13)	6067(2)	4447.6(17)	27.2(4)
N8	8375.4(13)	3835(2)	7042.1(17)	25.5(4)
N9	8972.1(13)	3143(2)	6642.9(18)	27.7(4)
N10	9538.5(14)	1824(2)	7278(2)	37.3(5)
C1	6372.3(15)	7997(2)	6545(2)	25.3(5)
C2	7203.1(15)	7636(2)	6395.3(19)	22.0(4)
C3	7298.1(14)	6032(2)	6427.6(18)	21.1(4)
C4	6275.7(15)	3982(2)	6831(2)	23.4(5)
C5	8008.4(14)	5003(2)	6292.2(19)	22.3(4)
C6	8393.0(14)	5026(2)	5438.3(19)	22.8(4)
C7	9021.9(15)	3809(3)	5683(2)	26.2(5)

O(1)-N(3)	1.208(3)	C(1)-N(1)-N(2)	104.71(17)
O(2)- N(3)	1.213(2)	N(1)-N(2)-C(4)	116.41(17)
O(3)- N(4)	1.208(3)	C(3)-N(2)-N(1)	112.46(17)
O(4)- N(4)	1.201(3)	C(3)-N(2)-C(4)	130.73(18)
O(5)- N(5)	1.206(3)	O(1)-N(3)-O(2)	128.1(2)
O(6)- N(5)	1.208(3)	O(1)-N(3)-C(4)	116.47(17)
O(7)- N(6)	1.226(2)	O(2)-N(3)-C(4)	115.5(2)
O(8)- N(6)	1.220(2)	O(3)-N(4)-C(4)	116.55(19)
O(9)- N(7)	1.223(3)	O(4)-N(4)-O(3)	128.8(2)
O(10)- N(7)	1.223(2)	O(4)-N(4)-C(4)	114.57(18)

O(11)- N(10)	1.206(3)	O(5)-N(5)-O(6)	128.9(2)
O(12)- N(10)	1.198(3)	O(5)-N(5)-C(4)	115.93(19)
N(1)- N(2)	1.383(2)	O(6)-N(5)-C(4)	115.2(2)
N(1)- C(1)	1.308(3)	O(7)-N(6)-C(2)	118.51(18)
N(2)- C(3)	1.379(3)	O(8)-N(6)-O(7)	124.44(19)
N(2)- C(4)	1.408(3)	O(8)-N(6)-C(2)	117.02(19)
N(3)- C(4)	1.540(3)	O(9)-N(7)-O(10)	124.9(2)
N(4)- C(4)	1.563(3)	O(9)-N(7)-C(6)	117.64(19)
N(5)- C(4)	1.544(3)	O(10)-N(7)-C(6)	117.4(2)
N(6)- C(2)	1.439(3)	C(5)-N(8)-N(9)	103.46(19)
N(7)- C(6)	1.441(3)	N(8)-N(9)-N(10)	119.5(2)
N(8)- N(9)	1.345(3)	N(8)-N(9)-C(7)	115.60(18)
N(8)- C(5)	1.323(3)	C(7)-N(9)-N(10)	124.8(2)
N(9)- N(10)	1.446(3)	O(11)-N(10)-N(9)	114.3(2)
N(9)- C(7)	1.349(3)	O(12)-N(10)-O(11)	130.2(2)
C(1)- C(2)	1.402(3)	O(12-)N(10)-N(9)	115.4(2)
C(2)- C(3)	1.371(3)	N(1)-C(1)-C(2)	111.13(19)
C(3)- C(5)	1.465(3)	C(1)-C(2)-N(6)	124.96(19)
C(5)- C(6)	1.408(3)	C(3)-C(2)-N(6)	127.04(19)
C(6)- C(7)	1.367(3)	C(3)-C(2)-C(1)	107.84(19)
		N(2)-C(3)-C(5)	124.29(18)
		C(2)-C(3)-N(2)	103.84(18)
		C(2)-C(3)-C(5)	131.8(2)
		N(2)-C(4)-N(3)	114.55(19)
		N(2)-C(4)-N(4)	112.47(17)
		N(2)-C(4)-N(5)	108.14(17)
		N(3)-C(4)-N(4)	108.53(16)
		N(3)-C(4)-N(5)	106.42(16)
		N(5)-C(4)-N(4)	106.24(17)
		N(8)-C(5)-C(3)	119.8(2)
		N(8)-C(5)-C(6)	110.43(19)
		C(6)-C(5)-C(3)	129.80(19)
		C(5)-C(6)-N(7)	128.58(19)
		C(7)-C(6)-N(7)	124.0(2)
		C(7)-C(6)-C(5)	107.4(2)
		N(9)-C(7)-C(6)	103.1(2)

Table S12. Anisotropic displacement parameters (Å² x 10³) for **5**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹⁺ ... + 2 h k a^{*} b^{*} U¹²].

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
01	34.7(9)	31.8(9)	32.3(9)	-4.3(7)	14.2(8)	-2.8(7)
O2	37.1(10)	21.2(8)	57.5(12)	1.9(8)	13.2(9)	-6.8(7)
O3	46.5(11)	31.0(10)	45.3(11)	16.9(8)	18.3(9)	13.3(8)
O4	38.1(10)	51.5(11)	27.9(9)	0.4(8)	6.7(8)	-2.5(8)
05	44.9(11)	52.1(12)	49.6(12)	13.2(9)	32.4(9)	5.6(9)
O6	22.2(8)	39.5(10)	58.1(12)	6.5(9)	10.7(8)	1.3(7)
07	27.1(8)	30.3(9)	53.3(11)	-1.9(8)	22.4(8)	-1.8(7)
08	42.6(10)	18.4(8)	57.1(12)	2.2(7)	25.3(9)	-1.5(7)
O9	45.2(11)	55.6(12)	42.1(11)	10.3(9)	30.5(9)	9.6(9)
O10	37.5(10)	50.2(11)	30.5(9)	10.7(8)	13.9(8)	16.4(8)
011	32.7(10)	33.9(10)	77.5(15)	1.6(9)	22.4(10)	10.3(8)
012	39.3(11)	51.5(12)	62.5(14)	30.0(11)	20.5(10)	11.1(9)
N1	25.3(9)	20.9(9)	33.6(10)	1.7(7)	16.0(8)	4.8(7)
N2	21.2(8)	18.1(8)	28.4(10)	3.1(7)	12.6(7)	1.6(7)
N3	23.5(9)	20.6(9)	33.5(11)	3.3(7)	6.5(8)	1.1(7)
N4	27.6(10)	36.2(11)	26.7(10)	7.7(8)	13.3(8)	4.3(8)
N5	26.5(10)	24.3(10)	44.8(13)	8.3(8)	19.2(9)	2.0(8)
N6	28.0(10)	21.6(9)	30.3(10)	-1.2(7)	13.8(8)	-3.5(7)
N7	28.5(10)	29.5(10)	26.0(10)	-0.8(8)	13.5(8)	0.9(8)
N8	21.8(9)	22.9(9)	33.2(10)	3.2(7)	12.3(8)	0.6(7)
N9	21.6(9)	21.6(9)	40.7(11)	4.3(8)	13.5(8)	3.8(7)
N10	22.0(10)	26.8(11)	58.0(15)	9.6(10)	10.8(10)	2.1(8)
C1	26.2(11)	21.3(11)	29.8(12)	0.8(8)	12.9(9)	1.4(8)
C2	24.5(10)	18.9(10)	24.0(11)	-0.4(8)	11.2(8)	-1.0(8)
C3	18.7(9)	22.7(10)	20.8(10)	-0.7(8)	6.9(8)	-1.4(8)
C4	20.0(10)	22.0(10)	29.2(11)	4.9(8)	10.8(9)	1.6(8)
C5	17.8(9)	21.3(10)	26.0(11)	-0.5(8)	6.8(8)	-1.8(8)
C6	20.3(10)	22.9(10)	24.2(11)	-1.1(8)	7.8(8)	-0.6(8)
C7	22.7(10)	25.0(11)	34.2(12)	-3.1(9)	14.9(9)	-0.9(8)

Table S13. Torsion angles [°] for 5.

				_
O(1)-N(3)-C(4)-N(2)	19.3(3)	N(2)-N(1)-C(1)-C(2)	-1.2(2)	_
O(1)-N(3)-C(4)-N(4)	-107.3(2)	N(2)-N(3)-C(5)-N(8)	-47.8(3)	
O(1)-N(3)-C(4)-N(5)	138.74(18)	N(2)-N(3)-C(5)-C(6)	131.4(2)	
O(2)-N(3)-C(4)-N(2)	-160.12(18)	N(6)-N(2)-C(3)-N(2)	175.2(2)	
O(2)-N(3)-C(4)-N(4)	73.3(2)	N(6)-C(2)-C(3)-C(5)	-6.1(4)	
O(2)-N(3)-C(4)-N(5)	-40.7(2)	N(7)-C(6)-C(7)-N(9)	-177.72(19)	
O(3)-N(4)-C(4)-N(2)	-154.9(2)	N(8)-N(9)-N(10)-O(11)	174.1(2)	

O(3)-N(4)-C(4)-N(3)	-27.1(3)	N(8)-N(9)-N(10)-O(12)	-5.9(3)
O(3)-N(4)-C(4)-N(5)	87.0(2)	N(8)-N(9)-C(7)-C(6)	-0.7(3)
O(4)-N(4)-C(4)-N(2)	27.1(3)	N(8)-C(5)-C(6)-N(7)	178.1(2)
O(4)-N(4)-C(4)-N(3)	154.85(19)	N(8)-C(5)-C(6)-C(7)	0.1(2)
O(4)-N(4)-C(4)-N(5)	-91.1(2)	N(9)-N(8)-C(5)-C(3)	178.86(18)
O(5)-N(5)-C(4)-N(2)	-98.2(2)	N(9)-N(8)-C(5)-O(6)	-0.5(2)
O(5)-N(5)-C(4)-N(3)	138.26(19)	N(10)-N(9)-C(7)-C(6)	-177.51(19)
O(5)-N(5)-C(4)-N(4)	22.7(2)	C(1)-N(1)-N(2)-C(3)	0.9(2)
O(6)-N(5)-C(4)-N(2)	80.9(2)	C(1)-N(1)-N(2)-C(4)	174.44(19)
O(6)-N(5)-C(4)-N(3)	-42.6(2)	C(1)-C(2)-C(3)-N(2)	-0.4(2)
O(6)-N(5)-C(4)-N(4)	-158.14(18)	C(1)-C(2)-C(3)-C(5)	178.3(2)
O(7)-N(6)-C(2)-N(1)	170.2(2)	C(2)-C(3)-C(5)-N(8)	133.7(2)
O(7)-N(6)-C(2)-N(3)	-4.6(3)	C(2)-C(3)-C(5)-C(6)	-47.0(4)
O(8)-N(6)-C(2)-N(1)	-8.1(3)	C(3)-N(2)-C(4)-N(3)	-64.1(3)
O(8)-N(6)-C(2)-N(3)	177.1(2)	C(3)-N(2)-C(4)-N(4)	60.4(3)
O(9)-N(7)-C(6)-N(5)	164.4(2)	C(3)-N(2)-C(4)-N(5)	177.4(2)
O(9)-N(7)-C(6)-N(7)	-17.9(3)	C(3)-C(5)-C(6)-N(7)	-1.2(4)
O(10)-N(7)-C(6)-N(5)	-15.6(3)	C(3)-C(5)-C(6)-C(7)	-179.2(2)
O(10)-N(7)-C(6)-N(7)	162.0(2)	C(4)-N(2)-C(3)-C(2)	-172.6(2)
N(1)-N(2)-C(3)-C(2)	-0.3(2)	C(4)-N(2)-C(3)-C(5)	8.5(4)
N(1)-N(2)-C(3)-C(5)	-179.15(19)	C(5)-N(8)-N(9)-N(10)	177.77(18)
N(1)-N(2)-C(4)-N(3)	123.83(19)	C(5)-N(8)-N(9)-C(7)	0.8(2)
N(1)-N(2)-C(4)-N(4)	-111.6(2)	C(5)-C(6)-C(7)-N(9)	0.3(2)
N(1)-N(2)-C(4)-N(5)	5.4(3)	C(7)-N(9)-N(10)-O(11)	-9.2(3)
N(1)-C(1)-C(2)-N(6)	-174.7(2)	C(7)-N(9)-N(10)-O(12)	170.8(2)
N(1)-C(1)-C(2)-C(3)	1.0(3)		

5. NMR spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S2. ¹³C NMR spectrum of **2**.

Figure S4. ¹³C NMR spectrum of **3**.

Figure S6. ¹³C NMR spectrum of 4

Figure S8. ¹³C NMR spectrum of **5**

6. DSC plots

Figure S9. DSC plot of **3**

Figure S10. DSC plot of 4

Figure S11. DSC plot of 5