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Figure S1. Fe-TFT fabrication process diagram.



Figure S2. (a) The schematic diagram of ferroelectric capacitor device. (b)-

(e) The P-E curves of HfLaO films with different ALD growth cycles. (f) 

Relationship between 2Pr and ALD growth cycles. (g) Endurance tests of 

the ferroelectric capacitor device with HfLaO films grown at 8 cycles. (h) 

P-V curve graphs of initial and final states extracted during endurance 

testing. (i) Plot of remnant polarization strength vs. retention time.



Figure S3. The fast fourier transform pattern of the HfLaO film.



Figure S4. Relationship between IG and VG.
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Figure S5. Plot of ΔPSC excited by gate pulses with different negative 

pulse amplitudes.



Figure S6. The current variation in the FeTFT when the pulse is applied.
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Figure S7. The PPF process is simulated by varying the time interval 

between two identical pulses.
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Figure S8. Relationship between ΔPSC and the frequency of pulses. 



Figure S9. LTP and Forget behaviour testings of Fe-TFT device.
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Figure S10. Change diagram of FeTFT conductance during LTP process.



Figure S11. Array diagram of 3×4 devices.



Figure S12. Shape diagram of partial pulses used in this work.
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Figure S13. ID-VG diagram after applying different numbers of pulses. 



0 2500 5000 7500 10000
0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
W

 (V
)

Endurance Cycles 

Figure S14. The relationship between memory window and endurance 

cycles.



Figure S15. Decay of the ΔPSC as a function of time measured after the 

stimulation of V = 3.5 V, t =500 μs.
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Figure S16. The forgetting curve was fitted by the formula.

Endurance and retention characteristics of FeTFTs

Figure S13 shows the ID-VG figure of the prepared FeTFT during the endurance process. 

It can be seen that as the endurance cycles gradually increase, the memory window (MW) 

gradually decreases, which is due to the trapping of charges 18. Even after 104 endurance 

cycles, the device still exhibits a counterclockwise MW (Fig. S14). The retention 

characteristics of FeTFT are characterized by fitting a forgetting curve. As shown in Fig. S15, 

the forgetting curve under the action of more intense pulses was fitted by the following 

Formula:

I=(I0-I∞)exp[-(t/τ)β]+I∞                                                                       (1)

where τ is the retention time, I0 is the triggered EPSC at the end of the synaptic spike, I∞ 

is the final value of the decay current and β is the stretch index ranging between 0 and 1. A 

good fitting curve of the decay of EPSC triggered by presynaptic spike (3.5 V, 500 μs) is 

obtained, as shown in Figure S16. τ is estimated to be 967s.
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Figure S17. Change diagram of FeTFT conductance during LTP/LTD 

process.

Asymmetry and linearity in weight update

When continuous pulses are applied, the device's conductance increases, with the maximum 

dynamic range being 1.045 μS (Figure S17). Asymmetry and linearity are important criteria 

for measuring synaptic devices. To calculate the non-linearity of LTP and LTD curves, the 

changes in G with the number of pulses is evaluated by the following equations:

                                              (1)
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                                                 (4)
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pulses, and α represents the non-linearity factor in the conductance modulation during LTP 
and LTD processes 7,19. It can be observed that the non-linearity of the LTP and LTD 
processes is αp≈0.239 and αd≈0, indicating a good linearity of the obtained LTP and LTD 
processes. In addition, the asymmetry of the LTP and LTD processes can be described by 丨
αP-αd丨. The calculated value of asymmetry is 0.239.
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Figure S18. Statistical diagram of ΔPSC after applying the same stimulus 

to eight devices.



Table S1. Comparison of this work with current state of artificial 

ferroelectric synaptic devices in terms of operating speed (Pulse Width).

Table S2. The comparison of this work with other reported devices in 

terms of synaptic properties.
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