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S1. NOMENCLATURE

Given the considerably variable nomenclature used across the literature to describe computational

material discovery and machine learning, we describe below the nomenclature used throughout this

paper in order to provide clarity to the reader.

First, the building blocks of the materials being studied are referred to as design features. For

example, in the case of a perovskite crystal, characterized by the chemical formula, ABX3, the design

features would entail choices of the A-site cation, B-site cation and X-site anion. The different choices

for each design feature are referred to as design choices. In the perovskite crystal example, the X-site

anion can be Cl−, I− or Br−, and these choices are called design choices. The A-site cation could be

methylammonium (MA), formamadinium (FA) of caesium (Cs), for instance, and so on.

Additionally, each design feature can either be represented as a one-hot-encoded (OHE) vector1

or by various physical properties describing the design feature. For example, the X-site anion can

be described using its electronegativity, ionic radius, etc. We refer to these physical properties as

descriptors.

The set of all descriptors provided by the user for all design features is called the property basket.

The above nomenclature describes the material domain.

We now describe the nomenclature used to describe the method developed in this work. The

material domain on which the search is conducted is represented by Gaussian Process Regression

(GPR)2 models. The choice of different prior mean choices are represented by GP-Prior Choice,

for example if we use a linear function as the prior mean, the model is written as GP-L. The GPR

models are constructed using descriptors for design features.

Lastly, the nomenclature referring to the optimization algorithm includes Bayesian Optimiza-

tion (BayesOpt)3, the surrogate model for BayesOpt given by the GPR models and the acquisition

function, used to refer to the function that gives a recommendation for the next point to consider.

S2. STATE-OF-THE-ART METHODS

In this section, we briefly describe state-of-the-art methods that are currently used for material

discovery.

Random search: A straightforward, if brute-force, approach to finding the optimal material relies

on randomly and exhaustively exploring the material space. On average, random searches will require

exploration of 50% (or more) of the material space in order to find the optimal candidates. Therefore,

this search strategy is applicable only when the size of the space being explored is small and the cost
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to explore the space is relatively low.

Bayesian optimization: Various extensions of the Bayesian optimization algorithm have been

developed that are also applicable to material discovery. One such framework is called SMAC (Se-

quential Model-based Algorithm Configuration)4. SMAC is a versatile Bayesian optimization package

for automated algorithm configuration and hyperparameter optimization. SMAC offers many default

optimization pipelines, and packages them into different interfaces called facades. In this work, we

mainly explore SMAC’s Black-Box Facade, which contains a Gaussian Process as its surrogate model

and Expected Improvement as its acquisition function, and its Hyperparameter Optimization Facade

which includes Random Forest and Log Expected Improvement as its surrogate model and acquisition

function, respectively.

Likewise, Hyperopt5 is another popular Python library used for hyperparameter optimization for

machine learning tools. It employs a combination of randomized search and tree-structured Parzen

estimators (TPE) to efficiently explore the hyperparameter space and find optimal configurations.

Like SMAC, it also uses Bayesian optimization to intelligently select hyperparameter settings to

evaluate based on results from previous trials. The results we present in this paper have been

benchmarked against these methods; see Section 2.
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S3. DOPED P-TYPE ORGANIC SEMICONDUCTING POLYMERS

A. Data Generation

For the density functional theory (DFT) calculations in this data set, the effects of solvent screening

were approximated through a conductor-like polarizable continuum model (CPCM).6 The geometry

optimizations and single-point calculations were carried out using the ORCA software7 with a B97-

D3 functional and def2-TZVP basis set, per the recommendations from Goerigk and Grimme for

organic molecules.8 For greater detail about the raster grid-based approach employed in the binding

enthalpy calculations, we direct the reader to the Supplemental Information of Mukhopadhyaya et

al.9

B. Description of Properties in the Property Basket

DPP No. of diketopyrrolopyrrole (DPP) structures in the polymer repeat unit

EDOT No. of ethylenedioxythiophene (EDOT) structures in the polymer repeat unit

TT No. of thienothiophene (TT) structures in the polymer repeat unit

Benzene Presence No. of benzene rings in the polymer repeat unit

Num Arms No. of chains emanating radially from the repeat unit’s center

EN DIFF Absolute value of the difference between the most and least electronegative atoms in the polymer repeat unit (Pauling units)

HOMO DFT-calculated HOMO (eV)

LUMO DFT-calculated LUMO (eV)

HL Absolute value of the difference between the repeat unit’s HOMO and LUMO (eV)

MW Molecular weight of repeat unit (g/mol)

Molecular Weight Molecular weight of dopant (g/mol)

HOMO DFT-calculated HOMO (eV)

LUMO DFT-calculated LUMO (eV)

HOMO-LUMO gap (eV) Absolute value of the difference between the repeat unit’s HOMO and LUMO (eV)

—EN DIFF— Absolute value of the difference between the most and least electronegative atoms in the polymer repeat unit (Pauling units)

Dielectric Dielectric constant applied in ORCA’s CPCM ”implicit solvation” implementation

Refractive Index Refractive index applied in ORCA’s CPCM ”implicit solvation” implementation

Molecular Weight Molecular weight of solvent molecule (g/mol)

TPSA Topological polar surface area (Å2)

Complexity Molecular complexity provides an estimate of the synthetic effort

DN Gutmann Donor Number (kcal/mol)

AN Acceptor Number

Table S1: Description of properties in the property basket of the doped p-type organic

semiconductor dataset shown in Fig. 3.
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C. Properties Selected by XGBoost

DPP No. of diketopyrrolopyrrole (DPP) structures in the polymer repeat unit

EDOT No. of ethylenedioxythiophene (EDOT) structures in the polymer repeat unit

TT No. of thienothiophene (TT) structures in the polymer repeat unit

Benzene Presence No. of benzene rings in the polymer repeat unit

HOMO DFT-calculated HOMO (eV)

Molecular Weight Molecular weight of dopant (g/mol)

LUMO DFT-calculated LUMO (eV)

Dielectric Dielectric constant applied in ORCA’s CPCM ”implicit solvation” implementation

Refractive Index Refractive index applied in ORCA’s CPCM ”implicit solvation” implementation

TPSA Topological polar surface area (Å2)

Complexity Molecular complexity provides an estimate of the synthetic effort

Table S2: Description of properties selected by XGBoost that are used as the input variable to

train the Neural Network mean function of the Gaussian Process model. These are properties

selected for the doped p-type organic semiconductor dataset shown in Fig. 3.

S6



Sharma et al.

S4. METAL HALIDE PEROVSKITES BANDGAP DATASET

A ion rad A-site atom/molecule Ionic Radius (Angstroms)

A den A-site atom/molecule density (g/cm3)

A at wt A-site atomic/molecular weight (u)

A IE A-site atom/molecule Ionization Energy (kJ/mol)

B ion rad B-site weighted average of atomic ionic radius (Angstroms)

B den B-site weighted average atom/molecule density (g/cm3)

B at wt B-site weighted average atomic/molecular weight (u)

B EA B-site weighted average atom/molecule Electron Affinity (kJ/mol)

B IE B-site weighted average atom/molecule Ionization Energy (kJ/mol)

B EN B-site weighted average atom/molecule Electronegativity

X ion rad X-site of atomic ionic radius (kJ/mol)

X den X-site atomic density (g/cm3)

Table S3: Description of properties selected by XGBoost that are used as the input variable to train

the Neural Network mean function of the Gaussian Process model. These are properties selected for

the metal halide perovskite bandgap dataset shown in Fig. 4. This dataset is taken from Ref. 10.
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S5. METAL HALIDE PEROVSKITE AND SOLVENT PAIRS DATASET FOR

SOLUTION-PROCESSED THIN FILM

Halide1-Electro Halide 1 electronegativity

Halide2-Electro Halide 2 electronegativity

Halide3-Electro Halide 3 electronegativity

Cation-Radius A-site atom/molecule Ionic Radius (Angstroms)

Cation-Enthalpy A-site ion-DMF solvent binding enthalpy (kcal/mol)11

Solvent-DN Gutmann Donor Number (kcal/mol)

Solvent-LCA Lithium Cation Affinity (kcal/mol)

Solvent-AN Acceptor Number

Solvent-DPM Dipole Moment (Debye)

Solvent-Dielectric Dielectric constant

Solvent-Density Density (g/cm3)

Solvent-MV Molar volume (g/mol)

Table S4: Description of properties selected by XGBoost that are used as the input variable to

train the Neural Network mean function of the Gaussian Process model. These are properties

selected for the metal halide perovskite and solvent pair dataset shown in Fig. 5. This dataset is

taken from Ref. 1.
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S6. STRESS TESTS FOR THE PAL 2.0 METHOD

In this section, we provide two stress tests we did to evaluate the performance of the PAL 2.0 and

understand its limitation.

For the first stress test, we evaluate the performance of the method with varying amounts of initial

data provided for training the surrogate models before running Bayesian Optimization. This stress

test is conducted on the metal halide perovskite bandgap dataset consisting of 244 materials.10 We

assess the BayesOpt performance for four initial data fractions used for training of the GP models

before running BayesOpt: 5%, 10%, 25% and 50%, Fig. S1. It is observed that the GP-NN surrogate

model created in PAL 2.0 outperforms the GP-0 model in all instances. However, the limitation of

the GP-NN model is that it needs some amount of initial data to train the Neural Network prior

mean function. On the other hand, the GP-0 model can be used without any training data.

GP
-0

, 5
%

GP
-N

N,
 5

%
GP

-0
, 1

0%
GP

-N
N,

 1
0%

GP
-0

, 2
5%

GP
-N

N,
 2

5%
GP

-0
, 5

0%
GP

-N
N,

 5
0%

0

5

10

15

20

%
 sp

ac
e 

ex
pl

or
ed

Figure S1: Stress test for PAL 2.0 for four initial data fractions used to train two different GP

models (GP-0 and GP-NN, essentially with and without the use of a neural network step) before

running BayesOpt: 5%, 10%, 25% and 50%. GP-NN outperforms GP-0 for all data fractions and

also needs to explore less of the space. Even with only 5% of the data, the GP-NN (orange) has to

explore less than 5% of the space. These results are shown on the metal halide perovskite band gap

dataset.10

For the second stress test, we evaluate the performance of the PAL 2.0 framework on a covalent
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organic framework (COF) dataset that consists of 69,840 2D and 3D COFs.12 This dataset replicates

some real-world scenarios wherein the search space to explore is very large but the data available

for training is limited. In this stress test, we used an initial training dataset of 68 points, i.e., 0.1%

of the total search space. The optimization target here is the deliverable capacity (v STP/v) of the

COF structure. The results obtained are compared with the Bayesian Optimization results from a

recent work by Deshwal et al.13 In Fig. S2, we plot the average number of COFs that are evaluated

before we find the optimal COF structure. The average reported for each COF tried is taken over

100 repetitions of the Bayesian Optimization with different initial training datasets that are chosen

randomly. We observed in Fig. S2 that the GP-NN model from PAL 2.0 outperforms the GP-0 model

and, indeed, the result by Deshwal et al.13 by finding the optimal COF within just 4 COF evaluations.

We attribute this superior performance of the GP-NN model to the highly predictive and accurate

NN prior mean function. Since the NN prior mean is predictive, the GP-NN model already has an

accurate representation of the optimization landscape. As a result, this model, in conjunction with

the acquisition function, is able to rapidly point to the optimal location within 4 iterations of the

Bayesian Optimization code. This testcase shows the validity of, and high performance of, the novel

surrogate model that we have constructed in this paper.
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Figure S2: Convergence plot showing the average number of Covalent Organic Frameworks

(COFs) evaluated before finding the most optimal COF for methane storage applications. The

dataset consists of 69840 2D and 3D COFs.12 The optimization target here is the deliverable

capacity (v STP/v) of the COF structure. An initial training dataset of 68 points, i.e. 0.1% of the

total search space, is used to train the priors of the Guassian Process models. The results obtained

are compared with the Bayesian Optimization results from a recent work by Deshwal et al.13
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