Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2024

Supplementary Materials

S.1 REE datasets curated for this study

			Inpu	ıt fe	atur	e [n	norla	ar%]]		Label [ppm, by molar]																
Sample	SiO_2	Al2O ₃	CaO	Fe2O ₃	MgO	Na2O	K2O	TiO ₂	P_2O_5	MnO	CeO ₂	Dy2O3	Er2O ₃	EuO	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr_2O_3	Sc2O ₃	Sm2O3	Tb2O3	Tm2O3	Yb2O3	Υ_2O_3	Total
1	44.80	14.36	26.88	2.50	7.41	1.53	0.46	1.19	0.44	0.03	58.62	2.02	1.10	1.21	2.29	0.37	16.44	0.14	12.60	3.44	21.52	2.31	0.33	0.14	0.94	18.64	142.1
2	34.26	11.54	27.43	2.41	8.74	13.29	0.34	1.01	0.57	0.02	46.67	1.58	0.89	1.00	1.78	0.29	12.61	0.11	9.97	2.70	18.88	1.86	0.27	0.11	0.74	14.41	113.9
3	67.51	14.34	5.76	6.57	1.69	0.97	1.84	1.00	0.09	0.05	58.54	2.34	1.33	1.09	2.45	0.43	15.64	0.18	12.63	3.39	24.51	2.53	0.37	0.18	1.14	21.53	148.3
4	72.21	16.02	1.80	5.27	1.72	0.32	1.09	1.26	0.09	0.02	81.41	2.87	1.71	1.42	3.32	0.58	20.00	0.21	17.37	4.60	37.51	3.47	0.49	0.23	1.46	29.41	206.1
Ŋ	68.79	19.30	1.41	4.37	2.73	0.37	1.38	1.17	0.17	0.03	98.13	3.61	2.19	1.70	4.21	0.71	24.65	0.28	22.08	5.83	42.63	4.48	0.66	0.30	1.84	37.21	250.5
9	66.78	19.58	2.06	4.97	2.82	0.37	1.51	1.30	0.28	0.04	108.75	3.73	2.12	1.93	4.42	0.73	26.74	0.27	24.29	6.39	39.06	4.74	0.67	0.29	1.84	37.22	263.2
И	79.28	9.55	2.16	4.19	2.12	1.22	0.62	0.54	0.08	0.04	25.71	0.91	0.53	0.54	1.14	0.18	6.27	0.08	5.83	1.55	25.57	1.20	0.16	0.08	0.48	9.44	79.7
8	38.33	9.84	35.57	2.04	11.27	1.27	0.27	1.02	0.00	0.00	37.94	1.25	0.67	0.93	1.46	0.23	10.09	0.08	8.08	2.13	12.81	1.57	0.20	0.09	0.57	11.58	89.7
6	33.32	11.56	34.57	7.94	10.05	0.20	0.27	0.76	0.05	0.82	55.45	2.95	1.87	1.48	3.21	0.60	12.75	0.22	14.06	3.56	28.82	3.07	0.50	0.24	1.53	37.14	167.5
10	43.20	10.86	29.38	2.42	9.51	1.17	0.09	2.65	0.12	0.05	45.03	1.77	1.09	0.95	1.94	0.35	12.05	0.15	9.45	2.55	31.98	1.92	0.31	0.15	1.01	17.73	128.4

Table S1: A representative subset (10%) of the REE dataset adopted in this study.

]		Label [ppm, by molar]																							
Sample	SiO_2	Al ₂ O ₃	CaO	Fe2O ₃	MgO	Na2O	K_2O	TiO ₂	P_2O_5	MnO	CeO ₂	Dy2O3	Er2O3	EuO	Gd2O3	$H_{02}O_3$	La2O3	Lu2O3	Nd2O3	Pr_2O_3	Sc2O3	Sm2O ₃	Tb_2O_3	Tm_2O_3	Yb2O3	Y_2O_3	Total
1	65.44	19.32	3.79	2.77	4.20	0.88	2.21	1.06	0.24	0.07	64.93	1.89	1.00	1.17	2.10	0.40	15.84	0.14	13.69	3.60	24.64	2.72	0.35	0.16	0.97	20.14	153.8
2	65.42	18.93	4.02	2.81	4.30	0.94	2.25	0.97	0.28	0.06	63.97	1.93	1.06	1.20	2.13	0.37	15.81	0.16	13.95	3.64	1.64	2.58	0.37	0.17	1.03	20.35	130.3
3	63.68	18.93	5.41	2.86	4.65	1.01	2.06	1.06	0.24	0.08	68.54	2.04	1.19	1.33	2.32	0.40	16.88	0.15	14.98	3.91	25.95	2.88	0.42	0.17	1.09	22.69	164.9
4	62.44	16.23	6.54	4.00	6.53	0.95	2.08	0.92	0.16	0.14	56.60	1.81	0.97	0.96	1.88	0.35	14.10	0.14	12.29	3.19	19.99	2.46	0.31	0.13	0.87	18.96	135.0
5	64.74	19.15	3.82	2.88	4.46	1.26	2.37	0.99	0.24	0.09	69.99	2.10	1.11	1.28	2.26	0.38	16.65	0.15	13.94	3.72	22.32	2.84	0.37	0.17	0.96	20.82	155.8
6	65.35	23.78	1.56	2.44	2.41	09.0	2.30	1.30	0.23	0.02	92.74	2.82	1.67	1.89	3.51	0.59	22.15	0.22	21.23	5.48	37.70	4.26	0.57	0.24	1.47	31.01	227.6
7	61.36	20.08	5.02	2.52	5.24	1.54	2.63	1.05	0.48	0.06	70.52	2.20	1.21	1.39	2.53	0.43	17.26	0.17	15.26	4.03	26.38	3.10	0.41	0.19	1.09	23.85	170.0
8	62.18	16.44	6.53	3.83	6.56	1.28	1.94	0.88	0.21	0.12	57.33	1.73	0.97	1.05	1.94	0.36	14.11	0.14	12.42	3.18	20.55	2.56	0.33	0.15	0.89	19.02	136.7
9	52.71	16.28	13.29	4.64	8.03	1.79	1.90	0.94	0.29	0.12	58.74	1.95	1.06	1.17	2.05	0.37	14.79	0.15	12.24	3.31	22.97	2.62	0.38	0.15	0.95	21.90	144.8
10	42.18	18.50	29.67	2.01	3.03	1.67	0.83	1.97	0.09	0.03	69.56	1.56	0.74	1.15	1.94	0.29	19.06	0.10	14.03	3.99	15.79	2.60	0.36	0.12	0.67	15.61	147.6
11	47.70	11.70	35.30	1.94	1.95	0.17	0.14	1.01	0.05	0.04	68.22	2.02	1.08	1.19	2.43	0.39	18.49	0.15	16.13	4.22	16.45	2.88	0.39	0.17	0.99	23.93	159.1
12	52.36	2.39	32.67	2.42	9.03	0.15	0.14	0.47	0.08	0.29	13.42	0.49	0.33	0.23	0.56	0.11	3.42	0.05	2.70	0.72	4.77	0.57	0.09	0.05	0.32	6.17	34.0

Table S2: A separate REE dataset consisting of 12 coal fly ashes from Poland. This dataset is curatedbased on the raw data reported by Franus et al. (88).

S.2 Effect of the hidden layer number of the neural network

To showcase the optimization of the number of hidden layers of the neural network, here we compare the model accuracy across three settings while maintaining the number of hidden neurons as a constant for fairness. The first model comprises a single layer with 26 neurons, the second model incorporates two layers with 20 and 6 neurons, respectively, and the third model features three layers with 17, 6, and 3 neurons, respectively. Each model undergoes independent hyperparameter optimization using a grid search within their typical ranges, as outlined in Sec. 2.3.

Upon evaluation, the single-layer model demonstrates inferior accuracy on both the training and test sets. The three-layer model attains the highest accuracy on both sets; however, a noticeable disparity emerges between the training and test accuracy, accompanied by a considerably larger standard deviation in the test R^2 . These observations suggest a tendency of overfitting in the three-layer model. In contrast, the two-layer model emerges as the optimal choice, reflected in the lower bound of the shadowed region (i.e., mean – standard deviation). Consequently, for this study, we adopt the neural network configuration featuring two hidden layers.

Figure S1: Prediction accuracy (as captured by the coefficient of determination, *R*²) offered by three neural network models of different numbers of hidden layers. For illustrative purposes, the total number of neurons is kept the same as 26 across the three compared cases. The results are presented for both the training (80%) and validation (20%) sets, obtained through stratified sampling. The shaded areas represent the standard deviation of the prediction accuracy on the two sets, calculated from 30 independent repeats of the model training.

Figure S2: Correlation between the contents of the selected oxides (molar fraction, as the model input) and individual REEs (ppm by molar, as the model output), regarding (A) Al₂O₃, (B) CaO, (C) TiO₂, (D) P₂O₅, (E) MgO, and (F) Fe₂O₃.

S.4 Comparision of the prediction accuracy between different single-task models

Table S3: Comparison of the accuracy of the different single-task models in predicting the total REE content. The training (80%) and test (20%) sets are obtained with stratified sampling. The results are reported based on the coefficient of determination, *R*², and mean absolute percentage error, MAPE; and the mean and standard deviation are obtained from 30 repetitions. For each model, the hyperparameters are optimized by using a grid search for the optimal *R*² within their typical ranges. Unless specified, the hyperparameters of the individual models are kept as the default values in their respective libraries.

M		Linear regression	Random forest	SVM	XGboost	Neural network			
NIL II	lodel	(40)	(40)	(40)	(65)	(64)			
Key hyperp	parameters	N/A	estimators= 30 max_depth = 4	degree=2 C=0.15	n_estimators=30 max_depth=4 eta=0.2	hidden layers = (20, 6) epoch = 500 alpha = 0.001 learning rate10 ^{-3.33} weight decay = 10 ⁻²			
T	R ²	0.876 ± 0.010	0.946 ± 0.005	0.896 ± 0.007	0.998 ± 0.001	0.940 ± 0.019			
Training set	MAPE [%]	9.8 ± 0.5	13.9 ± 0.6	19.2 ± 0.6	2.3 ± 0.3	6.7 ± 1.1			
Testest	R ²	0.847 ± 0.060	0.859 ± 0.057	0.866 ± 0.024	0.877 ± 0.056	0.875 ± 0.037			
rest set	MAPE [%]	10.2 ± 2.0	22.1 ± 4.4	22.0 ± 1.9	20.6 ± 4.3	9.5 ± 1.3			

5

S.5 Core code of the multi-task neural network model

The core code and trained multi-task neural network models are available in the below link: https://github.com/Little-uni/multi-task-neural-network