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1. Dataset

In this study, all data on NTE property of materials, including the magnitude of coefficient and 

temperature range, are derived from experimental results in published literatures, and some 

theoretical calculation results are also included. In order to make the prediction results more 

reasonable, we collected NTE and PTE material data in an approximately 1:1 ratio (see Table S1), 

and the crystal geometry of the collected PTE materials should have the same crystal symmetry as 

that of the corresponding NTE ones. 

Table S1 The number of NTE and PTE materials in Training Datasets

2. Chemical and Structure Features

For each collected NTE material, we have extracted the information of chemical formula 

Material Type NTE Numbers PTE Numbers

Oxides 123 129

Cyanides 46 31

Fluorides 18 16

Others 17 54

Total 204 230
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(including atomic number, covalent radius, electronegativity and number of valence electrons), 

lattice constant, the symmetry of crystal structure, the coefficient and the temperature range of 

thermal expansion. 

Table S2 Input features of NTE materials in machine learning

Content Description Example

Formula material formula Sc2Mo3O12

Structure crystal structure Orthorhombic

Lattice a, b, c, α, β, γ 9.72,9.50,13.59,90,90,90

Space group number
number representing the 

category of space group
60(space group symbol Pbcn)

T range of temperature 0K-300K

CTE
coefficient of thermal 

expansion
-6.3

VR Porosity 0.65

AE average electronegativity 2.96

3.  Data augmentation and cross-validation

By using the SMOTE algorithm and the random oversampling algorithm, the improved 

accuracy of dataset with data augmentation, together with the accuracy without data augmentation, 

is shown in Table S3. We see that data augmentation can significantly improve the accuracy of ML 

with smaller datasets.

Table S3 The accuracy of machine learning training with or without data augmentation

Methods with data augmentation without data augmentation

K-NN 97.2% 30.0%

DT 97.8% 12.0%

GBT 92.6% 52.0%

LR 53.5% 17.2%

SVR 98.8% 26.0%

RF 99.0.% 52.8%

Table S4 shows the results of using cross-validation to randomly divide the dataset into two 

and three parts for ML training. In the two-part cross-validation, the accuracy of the support vector 

machine model can reach up to 98.8%, and the accuracy of the random forest model up to 99.0%. 

While, in the three-part cross-validation, the accuracy also can be improved slightly, i.e., the 

accuracy of the support vector machine model can reach up to 99.2%, and the accuracy of the 



random forest model up to 99.2%.

Figure S1 Machine Learning (ML) prediction results of potential NTE materials for oxides, 

cyanides and fluorides, respectively (without data augmentation).

In Figure S1, we also present the predicted results without data augmentation and cross-

validation for comparison, the number of predicted NTE materials are almost three times that that 

of with data augmentation and cross-validation, showing that data augmentation and cross-

validation can improved the prediction accuracy of NTE materials. With the data augmentation and 

the improved high accuracy of cross-validation, it is reasonable that our dataset can be used to 

predict new NTE materials and the prediction results should be more reliable.

Table S4 The training accuracy of ML using cross-validation with the dataset divide into two or 

three parts

ML method two parts cross-validation three parts cross-validation

K-NN 97.2% 97.9%

DT 97.8% 98.3%

GBT 92.6% 92.8%

LR 53.5% 54.5%

SVR 98.8% 99.2%

RF 99.0% 99.2%

4. Determination of Regression Method 

In the multi-step ML method of predicting the possible NTE materials, we first use six kinds 

of regression algorithms to learn the training data and determine which is the best algorithm in terms 

of highest accuracy. These regression algorithms are K-nearest neighbour regression algorithm (K-



NN)1, decision tree algorithm (DT)2, gradient boosting tree algorithm (GBT)3, support vector 

regression algorithm (SVR)4, linear regression algorithm (LR)5 and random forest regression 

algorithm (RF)6, respectively. 

The cross-validation tests are conducted on the six algorithms mentioned above, and the errors 

of the CTE between the training results and the original ones in the datasets are shown in Table S5. 

Again, we see from the Table S5 that the random forest method has the highest accuracy and the 

smallest error of 5.9 ppm/K, while the linear regression algorithm has the largest error of ~ 40 

ppm/K. Therefore, we will present the predicted results of random forest algorithm in the following 

discussions.

Table S5 The results of cross-validation test in this work (CTE)

ML Method Accuracy Error (ppm/K)

K-NN 97.2% 9.6

DT 97.8% 8.5

GBT 92.6% 16.1

SVR 98.8% 6.3

LR 53.5% 40.4

RF 99.0% 5.9

Table S6 Cross-validation test results of range of temperature of NTE materials

Same as the prediction processes of CNTE, we also conduct cross-validation tests for the 

prediction of range of temperature with these regression algorithms. Table S6 shows the prediction 

errors between the training results and the original results of upper limit of temperature range. It can 

be seen that the random forest method has the highest accuracy with a smallest error of ~60K. And 

the linear regression algorithm has the largest error of more than 200K. Therefore, the random forest 

method (RF) is again to be selected for prediction of upper limit of temperature range.

ML Method Accuracy Error(K)

K-NN 94.6% 82.9

DT 88.0% 119.5

GBT 92.3% 98.8

SVR 95.1% 77.9

LR 67.7% 201.5

RF 96.9% 59.8



5. First principles calculations and results

Figure S2 The calculation of coefficient of NTE of TaP2O7 using the DFT with the quasi harmonic 
approximatiom. (a) Crystal Structure, (b) Phonon Spectrum, (c) Gruneisen parameters and (d) 
Lattice volume and CTE with changes of temperature, respectively.



Figure S3 The calculation of coefficient of NTE of Be (CN) 2 using the DFT with the quasi 
harmonic approximatiom. (a) Crystal Structure, (b) Phonon Spectrum, (c) Gruneisen parameters 
and (d) Lattice volume and CTE with changes of temperature, respectively.



Figure S4 The calculation of coefficient of NTE of In (CN)3 using the DFT with the quasi 
harmonic approximatiom. (a) Crystal Structure, (b) Phonon Spectrum, (c) Gruneisen parameters 
and (d) Lattice volume and CTE with changes of temperature, respectively.



Figure S5 The calculation of coefficient of NTE of CaSnF6 using the DFT with the quasi harmonic 
approximatiom. (a) Crystal Structure, (b) Phonon Spectrum, (c) Gruneisen parameters and (d) 
Lattice volume and CTE with changes of temperature, respectively.



Figure S6 The calculation of coefficient of NTE of HfTiF6 using the DFT with the quasi harmonic 
approximatiom. (a) Crystal Structure, (b) Phonon Spectrum, (c) Gruneisen parameters and (d) 
Lattice volume and CTE with changes of temperature, respectively.



Figure S7 The calculation of coefficient of PTE of Rb2MnF4 using the DFT with the quasi 
harmonic approximatiom. (a) Crystal Structure, (b) Phonon Spectrum, (c) Gruneisen parameters 
and (d) Lattice volume and CTE with changes of temperature, respectively.



Figure S8 The calculation of coefficient of PTE of NaAg3O2 using the DFT with the quasi 
harmonic approximatiom. (a) Crystal Structure, (b) Phonon Spectrum, (c) Gruneisen parameters 
and (d) Lattice volume and CTE with changes of temperature, respectively.

6. Discussion on the Relationship between Temperature Range, Porosity, and 

Average Electronegativity

The material structures mentioned in the main text that compare the magnitude of CNTE are 

shown in the following figures S9, S10 and S11.



Figure S9 Comparison of porosity and CNTE between (a) KAl (SO7) 2 and (b) ZrV2O7. Both 

materials belong to a cubic structure, with KAl (SO7) 2 porosity ~ 0.83 and CNTE=-27.8ppm/K; 

ZrV2O7 porosity~ 0.57, CNTE=-10.7ppm/K

Figure S10 Comparison of the crystal structure and CNTE of (a) Eu2Mo3O12 and (b) LiZr2(AsO4)3. 

The porosity of both materials is ~0.6, but Eu2Mo3O12 has an orthogonal structure with CNTE =    

-18.3ppm/K; LiZr2 (AsO4) 3 has a trigonal structure, CNTE = -0.36ppm/K.



Figure S11 Comparison of the crystal structure and CNTE of (a) TaP2O7 and (b) MgMo2O7. The 
average electronegativity of both materials is ~3.0. But TaP2O7 has a cubic structure, with CNTE = 
-10.7ppm/K; MgMo2O7 has a monoclinic structure, CNTE = -5.0ppm/K.

Beyond the three rules of the main text, we also plotted the relationships of temperature range 

with the porosity, as well as the average electronegativity for three kinds of compounds, see the 

Figure S12 (a)-(c) and Figure S13 (a)-(c), respectively. It can be seen that there is no direct 

correlation between temperature range with the porosity, as well as the average electronegativity, 

indicating that the factors affecting the temperature range of NTE materials are relatively complex, 

rather than the existence of a single factor correlation. 

Figure S12 Relationship between temperature range and the porosity of the three kinds of NTE 

materials. (a)oxides, (b) cyanides and (c)fluorides, respectively.

Figure S13 Relationship between temperature range and average electronegativity of the three 
kinds of NTE materials. (a)oxides, (b) cyanides and (c)fluorides, respectively.
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