Supporting Information

Designed Metal-organic π -clusters Combining Aromaticity of Metal

Cluster and Ligands for Third-order Nonlinear Optical Response

Zirui Wang^{a,b}, Yayu Yan^{a,c}, Jiali Chen^{a,c}, Qiao-Hong Li^{*,a,d} and Jian Zhang^{*,a,b,d}

 ^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
 ^b School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
 ^c College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
 ^d Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

E-mail: lqh2382@fjirsm.ac.cn, zhj@fjirsm.ac.cn

Table of Content

Computational details
Table S1 . Os-Os Bond Lengths of Different Os-organic π -clusters
Table S2 . Os-Os Bond Angle of Different Os-organic π -clusters
Table S3 . NPA Charge of Different Os-organic π -clusters
Table S4 . Calculated Formation Free Energy of Different Os-organic π -clustersS8
Table S5. Nucleus-Independent Chemical Shift of Different Os-organic π -clustersS9
Figure S1. Analysis of the aromaticity of Os-organic π -clusters: Structures (line 2).
The π contribution of anisotropy of the induced current density (AICD- π , iso=0.03
a.u.) (line 3). Iso-chemical shielding surfaces in Z direction (ICSS _{ZZ}) (line 4)S9
Table S6. Third-order NLO Coefficients of Different Os-organic π -clustersS10
Figure S2 . Third-order NLO coefficients of different Os-organic π -clustersS10
Table S7. Molecular Orbitals Energy and HOMOs Components of Different Os-
organic π-clustersS11
Figure S3 . Density of states (DOS) of different Os-organic π -clustersS12
Figure S4. Atomic orbitals of C and OsS12
Figure S5. Normalized UV-vis absorption spectra and electron-hole distribution
smoothing isosurface schematic of Os-organic clusters (in)S13
Figure S6. Normalized UV-vis absorption spectra in the visible-light range of Os_5
cluster
Figure S7. Schematic for dipolar (left), quadrupole (middle), and octupole (right)
molecular unit
Table S8. The Transition Nature of the Major Electron Excitations. S15
Table S9. Electron-hole Analysis of Main Excited States of Different Os-organic π -
clusters
Table S10. Contribution Ratio of Cluster Cores and Ligands to Electron-hole
DistributionS17

Computational details

All the calculations were implemented in Gaussian 16¹. The ground-state equilibrium geometries of these structures were fully optimized with density functional theory (DFT) using B3LYP functional and 6-31G(d,p) basis sets for C, H, and Lanl2DZ basis set for Os with D3 dispersion correction of Grimme ²⁻¹⁰. The analysis of nucleus-independent chemical shift (NICS) ^{11, 12} were also using B3LYP functional and 6-311++G(d,p) basis sets for C, H. Anisotropy of the Induced Current Density (AICD) ^{13, 14} and iso chemical shielding surface (ICSS) ^{15, 16} analysis used 6-31+G(d,p) basis sets for C, H. The static third-order nonlinear polarizability calculations and TDDFT were used cam-B3LYP functional ¹⁷ and aug-cc-pVDZ basis set for C, H. The frequency-dependent second hyperpolarizabilities were calculated by the sum-over-states (SOS) method ^{18, 19}. In order to get a deeper understanding of the wave function, Multiwfn 3.8(dev) code ²⁰ and VMD software ²¹ were used to analyze the electronic structures, hyperpolarizability, excitation characteristics, and aromaticity.

The electron-hole distributions are defined as follows:

$$\rho^{hole}(r) = \sum_{i \to a} (w_i^a)^2 \phi_i(r) \phi_i(r) + \sum_{i \to a_j} \sum_{j \neq i \to a} w_i^a w_j^a \phi_i(r) \phi_j(r)$$
$$\rho^{electron}(r) = \sum_{i \to a} (w_i^a)^2 \phi_a(r) \phi_a(r) + \sum_{i \to a_i \to b \neq a} w_i^a w_i^b \phi_a(r) \phi_b(r)$$

where *i* and *j* are the occupied orbital labels, *a* and *b* are the virtual orbital labels, and ϕ is the orbital wave function. *w* corresponds to the configuration coefficient of excitation.

The *D* index is used to measure the distance between the center of mass of holes and electrons.

$$D = \sqrt{(X_{ele} - X_{hole})^2 + (Y_{ele} - Y_{hole})^2 + (Z_{ele} - Z_{hole})^2}$$

The *t* index is used to measure the separation degree of holes and electrons.

$$t = D - H_{CT}$$

 E_{coul} represents the electron-hole coulomb attractive energy.

$$E_{coul} = \iint \frac{\rho^{hole}(r_1)\rho^{ele}(r_2)}{|r_1 - r_2|} dr_1 dr_2$$

The hole delocalization index (HDI) and the electron delocalization index (EDI) are

 $HDI = 100 \times \sqrt{\int [\rho^{hole}(r)]^2 dr}$ $EDI = 100 \times \sqrt{\int [\rho^{ele}(r)]^2 dr}$

Cluster				Os	-Os bond leng	th/Å				Average/Å	
05	Os1-Os2	Os2-Os3	Os3-Os1							2 5 2 7	
053	2.479	2.386	2.716							2.327	
06	Os1-Os2	Os2-Os3	Os3-Os4	Os4-Os1						2 462	
054	2.462	2.462	2.462	2.461						2.402	
Oc	Os1-Os2	Os2-Os3	Os3-Os4	Os4-Os5	Os5-Os1					2 / 71	
035	2.567	2.408	2.481	2.457	2.440					2.471	
Oc	Os1-Os2	Os2-Os3	Os3-Os4	Os4-Os5	Os5-Os6	Os6-Os1				2 1 2 8	
036	2.428	2.429	2.428	2.428	2.428	2.428				2.428	
Os	Os1-Os2	Os2-Os3	Os3-Os4	Os4-Os5	Os5-Os6	Os6-Os7	Os7-Os1			2 420	
037	2.433	2.429	2.439	2.437	2.426	2.418	2.425			2.430	
Oc	Os1-Os2	Os2-Os3	Os3-Os4	Os4-Os5	Os5-Os6	Os6-Os7	Os7-Os8	Os8-Os1		2 4 2 0	
038	2.420	2.419	2.420	2.419	2.420	2.420	2.418	2.420		2.420	
05-	Os1-Os2	Os2-Os3	Os3-Os4	Os4-Os5	Os5-Os6	Os6-Os7	Os7-Os8	Os8-Os9	Os9-Os1	2 415	
	2.420	2.411	2.413	2.399	2.394	2.445	2.413	2.428	2.416	2.415	

Table S1. Os-Os Bond Lengths of Different Os-organic π -clusters.

Table SZ . US-US Bond Angle of Different US-organic π-cil	usters.
--	---------

Cluster				Os	-Os bond angl	e/°				Average/Å
Os,	Os1-Os2-Os3	Os1-Os3-Os2	Os2-Os1-Os3	_	-	-	-	-	_	60.0
	67.9	57.7	54.5							
Os ₄	Os1-Os2-Os3	Os2-Os3-Os4	Os3-Os4-Os1	Os4-Os1-Os2	-	-	-	-	-	88.7
004	88.7	88.7	88.7	88.7						
Osc	Os1-Os2-Os3	Os2-Os3-Os4	Os3-Os4-Os5	Os4-Os5-Os1	Os5-Os1-Os2	-	-	-	-	103.0
	107.4	98.0	106.5	97.5	105.8					
Osc	Os1-Os2-Os3	Os2-Os3-Os4	Os3-Os4-Os5	Os4-Os5-Os6	Os5-Os6-Os1	Os6-Os1-Os2	-	-	-	109.2
	109.2	109.2	109.3	109.2	109.2	109.3				
Os ₇	Os1-Os2-Os3	Os2-Os3-Os4	Os3-Os4-Os5	Os4-Os5-Os6	Os5-Os6-Os7	Os6-Os7-Os1	Os7-Os1-Os2	-	_	115.1
	114.8	121.6	112.3	116.7	112.4	112.9	115.4			
Os	Os1-Os2-Os3	Os2-Os3-Os4	Os3-Os4-Os5	Os4-Os5-Os6	Os5-Os6-Os7	Os6-Os7-Os8	Os7-Os8-Os1	Os8-Os1-Os2	_	117.3
8	117.7	117.4	117	117.4	117.6	117.3	117.1	117.3		-
Osa	Os1-Os2-Os3	Os2-Os3-Os4	Os3-Os4-Os5	Os4-Os5-Os6	Os5-Os6-Os7	Os6-Os7-Os8	Os7-Os8-Os9	Os8-Os9-Os1	Os9-Os1-Os2	120.8
	117.6	123.3	117.1	124.1	126.1	117.4	119.7	120.9	120.9	

Cluster	Os1	Os2	Os3	Os4	Os5	Os6	Os7	Os8	Os9	sum
Os ₃	0.241	-0.022	0.081	-	-	-	-	-	-	0.300
Os ₄	0.024	0.024	0.024	0.025	-	-	-	-	-	0.097
Os ₅	0.129	0.020	0.059	-0.014	0.126	-	-	-	-	0.320
Os ₆	0.063	0.063	0.063	0.063	0.064	0.063	-	-	-	0.379
Os ₇	0.077	0.019	0.059	0.068	0.051	-0.002	0.084	-	-	0.356
Os ₈	0.046	0.051	0.053	0.050	0.048	0.049	0.054	0.051	-	0.402
Os ₉	0.089	0.058	0.029	0.020	0.065	0.020	0.065	0.040	-0.009	0.377

Table S3. NPA Charge of Different Os-organic π -clusters.

Cluster	N×Os1 /Hartree	Zero-point correction /Hartree	Electronic and zero- point Energies /Hartree	Electronic /Hartree	Electronic and thermal Free Energies /Hartree	Thermal Free Energies /Hartree	G /Hartree	∆G /Hartree	△G _{average} /Hartree
Osı	-361.099	0.101	-361.167	-361.269	-361.200	0.069	-361.099	0.000	0.000
Os₃	-1083.297	0.311	-1083.780	-1084.091	-1083.835	0.256	-1083.524	-0.227	-0.076
Os ₄	-1444.396	0.416	-1445.111	-1445.526	-1445.175	0.351	-1444.759	-0.363	-0.091
Os ₅	-1805.495	0.520	-1806.395	-1806.914	-1806.469	0.445	-1805.949	-0.455	-0.091
Os ₆	-2166.594	0.627	-2167.731	-2168.359	-2167.810	0.548	-2167.183	-0.589	-0.098
Os ₇	-2527.693	0.734	-2529.016	-2529.750	-2529.106	0.644	-2528.372	-0.679	-0.097
Os ₈	-2888.792	0.840	-2890.334	-2891.174	-2890.433	0.741	-2889.593	-0.801	-0.100
Os ₉	-3249.891	0.947	-3251.623	-3252.570	-3251.731	0.839	-3250.784	-0.893	-0.099

Table S4. Calculated Formation Free Energy of Different Os-organic π -clusters.

Cluster	NICS(0) /ppm	NICS(1) /ppm	NICS(0) _{zz} /ppm	NICS(1) _{zz} /ppm	NICS(0) _{πzz} /ppm	NICS(1) _{πzz} /ppm
Os ₃	-18.51	-17.22	-96.62	-35.29	-54.45	-27.05
Os ₄	-21.11	-19.33	-87.78	-49.69	-59.40	-38.18
Os₅	-9.37	-4.20	-42.28	-20.78	-27.59	-13.04
Os ₆	2.25	4.00	-6.11	-0.96	-10.01	-6.15
Os ₇	2.54	4.48	-8.17	-6.34	-22.42	-17.39
Os ₈	0.41	2.36	-8.02	-5.91	-22.30	-17.40
Os ₉	5.30	4.92	-2.65	-3.92	-11.48	-10.28

Table S5. Nucleus-Independent Chemical Shift of Different Os-organic π -clusters.

Figure S1. Analysis of the aromaticity of Os-organic π -clusters: Structures (line 2). The π contribution of anisotropy of the induced current density (AICD- π , iso=0.03 a.u.) (line 3). Iso-chemical shielding surfaces in the Z direction (ICSS_{ZZ}) (line 4).

Cluster	Magnitude of gamma/a.u.	Average of Magnitude of gamma/a.u.
Os ₃	7.610900E+04	2.536967E+04
Os ₄	1.001181E+05	2.502953E+04
Os ₅	1.640102E+05	3.280204E+04
Os ₆	1.398585E+05	2.330975E+04
Os ₇	1.708772E+05	2.441103E+04
Os ₈	1.997905E+05	2.497381E+04
Os ₉	2.443956E+05	2.715507E+04

Table S6. Third-order NLO Coefficients of Different Os-organic π -clusters.

Figure S2. Third-order NLO coefficients of different Os-organic π -clusters.

Cluster	HOMO/eV	LUMO/eV	E _{gap} /eV	Os (5 <i>d</i>)	C (2 <i>p</i>)	Other
Os ₁	-4.71	-2.03	2.68	68.64%	2.26%	29.10%
Os₃	-4.98	-2.86	2.13	74.39%	13.73%	11.88%
Os ₄	-4.92	-2.58	2.34	53.86%	38.45%	7.69%
Os₅	-4.32	-2.86	1.47	41.86%	44.13%	14.01%
Os ₆	-4.60	-2.40	2.20	39.80%	41.46%	18.74%
Os ₇	-4.42	-2.53	1.88	48.04%	34.21%	17.75%
Os ₈	-4.70	-2.27	2.43	45.84%	32.47%	21.69%
Os9	-4.29	-2.60	1.69	44.05%	32.62%	23.33%

 Table S7. Molecular Orbitals Energy and HOMOs Components of Different Os-organic
 π -clusters.

-

Figure S3. Density of states (DOS) of different Os-organic π -clusters.

Figure S4. Atomic orbitals of C and Os.

Figure S5. Normalized UV-vis absorption spectra and electron-hole distribution smoothing isosurface schematic of Os-organic clusters (in).

Figure S6. Normalized UV-vis absorption spectra in the visible-light range of the Os₅ cluster.

Figure S7. Schematic for dipolar (left), quadrupole (middle), and octupole (right) molecular unit.

Cluster	Wavelength	f	Major MO transitions
Os ₃	S ₀ -S ₇ : 558.69 nm	0.02600	H-1 -> L+1 72.0%, H-1 -> L+6 7.6%, H-1 -> L+2 5.8%
Os ₄	S ₀ -S ₁₁ : 564.05 nm	0.06670	H-2 -> L+2 45.6%, H-2 -> L+3 31.7%
Os ₅	S ₀ -S ₂₀ : 526.05 nm	0.06410	H -> L+8 24.2%, H -> L+6 14.9%, H-2 -> L+1 7.6%, H-3 -> L+1 6.9%
Os ₆	S ₀ -S ₁₁ : 566.53 nm	0.07730	H-1 -> L+3 25.1%, H -> L+4 25.0%, H -> L+5 14.9%, H-4 -> L 9.0%, H-2 -> L+1 8.2%
Os ₇	S ₀ -S ₆ : 654.03 nm	0.02240	H-1 -> L+2 19.9%, H-2 -> L 12.7%, H-1 -> L+1 10.5%, H -> L+3 5.4%, H-3 -> L 5.3%, H-2 -> L+1 5.1%
Os ₈	S ₀ -S ₁₅ : 545.92 nm	0.07900	H -> L+7 10.6%, H-3 -> L+5 7.4%, H-2 -> L+6 6.4%, H-2 -> L+5 6.3%, H-3 -> L+6 5.7%
Os ₉	S ₀ -S ₂₄ : 544.94 nm	0.01000	H-1 -> L+15 14.7%, H -> L+10 7.6%, H -> L+15 5.6%

Table S8. The Transition Nature of the Major Electron Excitations.

Cluster	Wavelength	S _r (a.u.)	D (Å)	H (Å)	t (Å)	HDI	EDI	E _{coul} (eV)
Os ₃	S ₀ -S ₇ : 558.69 nm	0.75	0.548	2.87	-1.24	6.56	6.03	4.88
Os ₄	S ₀ -S ₁₁ : 564.05 nm	0.83	0.223	3.19	-1.10	6.37	4.01	4.46
Os₅	S ₀ -S ₂₀ : 526.05 nm	0.85	0.868	3.44	-1.29	4.23	3.85	4.08
Os ₆	S ₀ -S ₁₁ : 566.53 nm	0.85	0.001	3.74	-2.46	3.63	3.15	3.81
Os ₇	S ₀ -S ₆ : 654.03 nm	0.82	0.209	3.86	-2.05	3.74	3.71	3.70
Os ₈	S ₀ -S ₁₅ : 545.92 nm	0.87	0.051	4.14	-1.90	3.17	2.82	3.47
Os ₉	S ₀ -S ₂₄ : 544.94 nm	0.80	0.492	4.20	-2.23	4.37	3.66	3.42

Table S9. Electron-hole Analysis of Main Excited States of Different Os-organic π -clusters.

Cluster	Wavelength	%Ele _M	%EleL	%Hole _м	%Hole∟	<i>Ele</i> _M -0.5	<i>Ele</i> ∟-0.5	<i>Hole</i> _M -0.5	<i>Hole</i> ∟-0.5	Σ
Os ₃	S ₀ -S ₇ : 558.69 nm	32.08%	67.92%	55.34%	44.66%	0.1792	0.1792	0.0534	0.0534	0.4652
Os ₄	S ₀ -S ₁₁ : 564.05 nm	37.73%	62.27%	71.79%	28.20%	0.1227	0.1227	0.2179	0.2180	0.6813
Os ₅	S ₀ -S ₂₀ : 526.05 nm	36.93%	63.07%	57.39%	42.61%	0.1307	0.1307	0.0739	0.0739	0.4092
Os ₆	S ₀ -S ₁₁ : 566.53 nm	34.85%	65.15%	68.34%	31.66%	0.1515	0.1515	0.1834	0.1834	0.6698
Os ₇	S ₀ -S ₆ : 654.03 nm	41.50%	58.50%	75.16%	24.84%	0.0850	0.0850	0.2516	0.2516	0.6732
Os ₈	S ₀ -S ₁₅ : 545.92 nm	49.05%	50.95%	71.27%	28.73%	0.0095	0.0095	0.2127	0.2127	0.4444
Os ₉	S ₀ -S ₂₄ : 544.94 nm	45.01%	54.99%	85.36%	14.64%	0.0499	0.0499	0.3536	0.3536	0.8070

Table S10. Contribution Ratio of Cluster Cores and Ligands to Electron-hole Distribution.

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, H. P. H. B. Mennucci, A. F. I. J. V. Ortiz, J. L. Sonnenberg, and F. D. D. Williams-Young, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox., *Journal*, 2016.
- 2. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
- 3. W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284-298.
- 4. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
- 5. A. D. Becke, *Phys. Rev. A.*, 1988, **38**, 3098-3100.
- 6. C. T. Lee, W. T. Yang and R. G. Parr, *Phys. Rev. B.*, 1988, **37**, 785-789.
- 7. B. Miehlich, A. Savin, H. Stoll and H. Preuss, *Chem. Phys. Lett.*, 1989, **157**, 200-206.
- 8. A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
- 9. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623-11627.
- 10. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132.
- 11. P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. van Eikema Hommes, *J. Am. Chem. Soc.*, 1996, **118**, 6317-6318.
- 12. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. v. R. Schleyer, *Chem. Rev.*, 2005, **105**, 3842-3888.
- 13. R. Herges and D. Geuenich, J. Phys. Chem. A, 2001, **105**, 3214-3220.
- 14. D. Geuenich, K. Hess, F. Köhler and R. Herges, *Chem. Rev.*, 2005, **105**, 3758-3772.
- 15. S. Klod and E. Kleinpeter, *J. Chem. Soc., Perkin Trans.* 2, 2001, DOI: 10.1039/B009809O, 1893-1898.
- 16. Z. Liu, T. Lu and Q. Chen, *Carbon*, 2020, **165**, 468-475.
- 17. T. Yanai, D. P. Tew and N. C. Handy, *Chem. Phys. Lett.*, 2004, **393**, 51-57.
- 18. K. Sasagane, F. Aiga and R. Itoh, *J. Chem. Phys.*, 1993, **99**, 3738-3778.
- F. Meyers, S. R. Marder, B. M. Pierce and J. L. Bredas, J. Am. Chem. Soc., 1994, 116, 10703-10714.
- 20. T. Lu and F. Chen, J. Comput. Chem., 2012, **33**, 580-592.
- 21. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38.