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Supplementary Note 1

The chemical structures of five ionic liquids were characterized by infrared-spectroscopy (Figure
S2, Supplementary Information). The absorption peaks at 3279-3537 cm™!, 3062 cm! and 1564
cm! were attributed to the v(-C-H), v(-CH=CH-) and v(-C=N-) on the imidazole ring of [EBIM]
cations, respectively. The sharp absorption peaks at 1468 cm™! were attributed to the v(-C-H) of
methyl on the side chain of alkane, while the peak at 1690 cm™! were attributed to the v(-C=0) of
TFA anions and the peak at 1059 ¢cm™! were attributed to the v(B-F) of BF, anions, respectively.
Combined with the results of FT-IR and '"H-NMR (Supplementary Figure S1), it can be proved

that all five ionic liquids have been successfully synthesized.
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Figure S1. The cation and anion of ILs used in this work.
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Figure S2. The 'H-NMR spectra of ILs, (a) [EBIM]Br, (b) [BBIM]Br, (¢) [HBIM]Br, (d)
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Figure S3. The FT-IR spectra of five kinds of ionic liquids.
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Figure S4. (a) The viscosity-frequency curves and (b) viscosity-temperature curves of five kinds

of ionic liquids.
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Figure S5. Optical photos of WPAM-IL and PAM-IL ionogels prepared with different ILs.
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Figure S6. The XRD spectra of PAM,-IL([EBIM]Br) ionogels and [EBIM]Br ionic liquid.
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Figure S7. (a, b) Visible light transmittance spectra of (a) PAM;¢-IL(Y) ionogels, Y=[EBIM]Br,
[EBIM]BF,, and [EBIM]TFA, (b) PAMyy-IL(Y) ionogels, Y=[EBIM]Br, [BBIM]Br, and
[HBIM]Br.
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Figure S8. Phase separation process of (a) PAM3,-IL([EBIM]Br) ionogel, (b) PAM;s-IL([EBIM]Br) ionogel, (c)
PAM4-IL([EBIM]Br) ionogel and (d) PAM;y-IL([EBIM]Br) ionogel during temperature rise (from RT to 140 °C,
5°C/min) and fall (from 140°C to RT, 5°C/min) observed by optical microscope.
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Figure S9. DSC curves of (a) PAM,-IL([EBIM]Br) ionogels, and (b) PAM,-IL([EBIM]Br)

ionogels after a cycle of heating up and down, the cooling rate is 10K/min.
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Figure S10. Structure models of PAM,-IL([EBIM]Br) ionogels with anneal and dynamic optimized based on MD
calculation, (a) PAM,s-IL([EBIM]Br) ionogel, (b) PAM,,-IL([EBIM]Br) ionogel, (c) PAM,s-IL([EBIM]Br)
ionogel, (d) PAM;,-IL([EBIM]Br) ionogel, (¢) PAM;s-IL([EBIM]Br) ionogel, (f) PAM,4-IL([EBIM]Br) ionogel,
(g) PAM;,-IL([EBIM]Br) ionogel.
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Figure S11. The SEM
IL([EBIM]Br) ionogels, and the corresponding ionogels obtained after slow cooling. The polymer content of the
ionogels in each row is "X," where "X" represents the mass fraction of polymer (x=15, 20, 25, 30, 35, 40, or 50).

The images on the right side of each column are magnifications of the corresponding images on the left side.
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Figure S12. Compressive stress-strain curves of PAMx-IL([EBIM]Br) ionogels (magnification of the
black dashed area in Figure 3c¢).
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Figure S13. Mechanical properties of WPAM,-IL([EBIM]Br) ionogels. (a) Tensile stress-strain
curves of WPAM,-IL([EBIM]Br). (b-d) A comparison between WPAM,-IL([EBIM]Br) and
PAM,-IL([EBIM]Br) in relation to (b) tensile strength, (c) tensile modulus, and (d) elongation at
break. x=15, 20 and 30. Error bars show standard deviation from three independent samples.
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Figure S14. (a) TGA curves of ionic liquids, (b) DTG curves of PAM,-IL([EBIM]Br) ionogels,
and (c¢) DTG curves of ionic liquids.
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Figure S15. Infrared thermal imaging photos of thermally driven shape-memory behavior of
PAMA40-IL ionogel programmed as box shape.
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Figure S16. The mechanical properties of PAMyo-IL([EBIM]Br) ionogel before and after

recycling.
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Figure S17. PDMS/PAM-IL/PDMS ultra-thin keyboard. (a)

Schematic diagram, (b) Optical
photograph, (c) Signal curves under different click modes.
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Table S1. Performance summary of PAM,-IL(Y) ionogels.

Transmittance  Density  Tensile Tensile  Elongation at Tensile yield opqyctiviey Compressive Compressive Thermal
Tonogel vy .- strength  modulus break strength o strength modulus  decomposition
/MPa /MPa 1% /MPa /MPa /MPa temperature/°C

PAM,;-IL([EBIM]Br) 94.0 1.267 1.45 19.2 283 1.08 0.875 0.30 7.0 257
PAM,,-IL([EBIM]Br) 98.6 1.273 4.13 263 535 1.66 0.920 0.95 17.1 257
PAM,-IL([EBIM]Br) 95.7 1.271 7.73 88.7 425 4.70 0.542 39 85.3 257
PAM;-IL([EBIM]Br) 98.0 1.282 10.4 143.18 386.7 8.45 0.849 10.1 201.1 257
PAM;-IL([EBIM]Br) 91.8 1.290 19.1 251.6 229 19.5 0.036 17.1 334.2 257
PAM,;-IL([EBIM]Br) 92.2 1.300  31.1 319.80 30.2 29.8 0.042 36.6 683.3 257
PAM;-IL([EBIM]Br) 96.7 1.308 Too hard and brittle to test 0.023 112.2 1771.8 257
PAM,-IL([BBIM]Br) 66.6 1.209 Too brittle to test
PAM,-IL([HBIM]Br) 36.3 1.164 Too brittle to test
PAM,;,-IL([EBIM]BF,) 1.39 1.255 Obvious leakage, too brittle to test
PAM;-IL([EBIM]TFA) 0.76 1.254 Obvious leakage, too brittle to test
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Table S2. The mechanical properties of WPAM,-IL([EBIM]|Br) and PAM,-IL([EBIM]Br)

ionogels.

Tiigoal Tensile Tensile Elongation at tensile Yield

& strength/MPa modulus/MPa break/% strength/MPa
PAM,5-IL([EBIM]Br) 1.45 19.2 283 1.08
PAM,,-1L([EBIM]Br) 4.13 26.3 535 1.66
PAM,s-IL([EBIM]Br) 73 88.7 425 4.70
WPAM ;- IL([EBIM]Br) 0.91 5.83 536 0.51
WPAM,,-IL([EBIM]Br) 1.65 24.6 231 1.65
WPAM,;-IL([EBIM]Br) 3.76 46.5 267 3.76
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Table S3. The mechanical properties of reported high strength gel materials.

No.  Strength/MPa Modulus/MPa Toughness/MJ-m3 Type
1 3.64 0.46 27.60 Hydrogel!
2 5.60 1.30 - Hydrogel?
3 3.10 0.60 8.65 Hydrogel3
4 1.36 0.49 - Hydrogel*
5 2.00 - 22.00 Hydrogel’
6 2.70 1.17 10.80 Hydrogels
7 2.20 0.27 - Hydrogel’
8 2.70 0.82 8.50 Hydrogel®
9 9.30 277.00 0.40 Hydrogel®
10 20.20 16.10 62.70 DES gell©
11 5.19 0.20 - PU-IL ionogel!!
12 2.52 1.43 2.55 PU-IL ionogel'?
13 22.00 - 109.80 PU-IL ionogel'3
14 4.99 1.71 - PU-IL ionogel'*
15 9.15 1.12 178.46 BC ionogel'>
16 300.00 5000.00 16.00 BC ionogel'®
Organic-inorganic
17 3.70 2.46 6.25 ionogel!”
18 0.23 0.04 - PILs ionogel'®
19 2.28 2.28 - PILs ionogel?
20 15.00 82.81 - PILs ionogel?®
21 12.60 46.50 - P(AA-co-AM) ionogel?!
P(IBA-co-MEA)
22 7.12 0.94 - ionogel??
23 0.37 0.42 21.80 PAA/CNF ionogel??
24 14.30 55.00 78.00 PDMAA ionogel**
25 0.90 15.60 2.48 PSHM ionogel®
26 4.80 0.48 - PEA ionogel?®
27 7.60 58.00 25.00 PDMAA/MOF ionogel?’
This
work 31.10 319.80 32.90 PAM-IL ionogel
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