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1. Details for MD, BTE and DFT calculations 

Classic molecular dynamic simulation

All molecular dynamic (MD) simulations were performed by using the large-scale 

atomic/molecular massively parallel simulator (LAMMPS) package 1. Since rare-earth 

tantalates are ionic crystals, the interatomic interactions in the MC/MD simulations were 

described using the Born model based on the rigid body, which is expressed as follows:
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where the subscripts i and j denote the ionic pair between the i-th and the j-th atom, r is the 

interatomic distance and q is the atomic charge. The parameters , , and  are listed in ijA ij ijC

Table S1. The first term represents the long-range Coulomb interaction, and the remaining two 

terms represent the short-range repulsion, and ε0 is the vacuum permittivity. The Ewald 

approximation with an accuracy of 1.0e−6 was employed to calculate the long-range Coulomb 

potential.

The lattice constant of the defect fluorite structure of RE3TaO7 was initially set at 5.192 Å 

in a simulation cell, which is oriented with [100], [010], and [001] directions aligned 

respectively with x, y, and z axes. The initial structures were obtained by randomly injecting 

Y, Dy, Er, Ho, Yb, and Ta atoms at cationic sites according to stoichiometric ratios. The atom 

distribution was optimized by performing Monte Carlo (MC) site-occupancy swaps between 

pairs of sites under the calculated temperature respectively. The acceptance of each MC swap 

conforms to the Metropolis criterion 2; that is, if the system energy following the swap attempt, 

i + 1, E(i + 1), is lower than that following the previous successful swap, E(i), the MC swap is 

accepted. Otherwise, it is accepted with a probability of 3:
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Where T is absolute temperature. If a uniformly generated random number in the range of (0,1), 

R, is lower than / equal to P, the MC swap is accepted. Otherwise, it is rejected. The MC steps 

are interchanged with MD relaxations to efficiently converge site occupancy and atomic 

displacements.
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According to the Green-Kubo (GK) formula, the κ of bulk samples were calculated using 

equilibrium molecular dynamic (EMD) simulation based on the fluctuation dissipation theory 

4:
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where V is the volume of the simulation cell. is the heat current autocorrelation (0) ( )tJ J

function (HCACF). The EMD approach can eliminate the effect of the cell size on the 

simulation results so that the inherent κ can be obtained. The heat current J was calculated 

using the following expression 5:
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where , , , , and  are the mass, velocity, potential energy, virial force, and position im i iU iν ir

of the i-th atom, respectively. For each sample, 10 independent calculations were performed to 

calculate the average κ and evaluate the corresponding error. Unless otherwise specified, the 

average κ values presents below were averaged over 10 calculations. 

The phonon dispersion relationship was calculated using the phonon spectral energy density 

(SED) 6. This method directly projects the trajectories of atoms onto the vibrational modes to 

determine the distribution of the vibrational energy in the wavevector-frequency space:
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where q, ω, Ns and  are wave vector, frequency of phonon mode, the total number of unit 0

cells and integration time.  is the displacement in the α direction of atom b with , , ;x y zn
u t

b
 
 
 

&

mass  inside unit cell . r is the equilibrium position of each unit cell. In this work, bm , ,x y zn

150000 trajectories were calculated in the microcanonical ensemble (NVE) for each sample.

Boltzmann transport equation
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The κ of RE3TaO7 were also investigated based on Boltzmann transport equation (BTE) with 

relaxation time approximation (RTA)  using the  ALAMODE package 7 with the Buckingham 

potential. The second- and third-order interatomic force constants (IFCs) were obtained from 

the ALM code which is distributed with ALAMODE. The forces required to obtain IFCs were 

computed by the LAMMPS code. The RTA to calculate the κBTE was applied using 8:
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where ,  and  are the frequency, group velocity and lifetime of the ( , ) q ( , ) q ( , ) q

phonon mode , respectively, with  and  representing phonon wave vector and phonon ( , )q q 

branches.

Density functional theory (DFT) calculation

The crystal orbital Hamilton population (COHP) analysis was employed to evaluate the 

strength of the bonds 9,10. The COHP analysis is a technique for partitioning the band structure 

energy into bonding, nonbonding, and antibonding contributions using localized atomic basis 

sets 9. In analogy to the density of states (DOS), for which the energy integration up to the 

Fermi energy gives the number of electrons, the energy integration of all COHP for a pair of 

atoms up to the Fermi energy (ICOHP) can imply the bond strength 11. All the COHP 

calculations were performed by the LOBSTER code 12 with the tetrahedron method. 

As another method for evaluating a bond strength, the force constant between metal atoms 

and O atom was evaluated from the phonon calculations by self-consistent density functional 

perturbation theory (DFPT) in the linear response approach 13 with Phonopy code 14. The force 

constant is described as a 3×3 matrix, the trace of the force constant matrix, which is scalar 

quantity, can be considered as the force constant Fij between atoms i and j. 

Based on the integrated COHP (ICOHP) analysis and force constant calculations, the 

strength of bonds in materials can be approximated. ICOHP analysis has been applied to 

measure the bond strength of various materials 10,15,16. The force constant, as another physical 

quantity that relates to the strength of chemical bonds, is gradually being extended to the 
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analysis of bond nature of solids 17,18 and interfaces 19. However, special care needs to be taken 

that ICOHP mainly measures the covalent strength part of the chemical bond, while the force 

constant describes the behavior of the energy potential change when the bond deviates slightly 

from the equilibrium scale 15.

2. Additional results from XRD and SEM

Phase and crystal structure

The experimental and Rietveld refined XRD patterns of the sintered RE3TaO7 specimens are 

shown in Fig. S1. Here the XRD diffraction peaks correspond to (111), (200), (220), (311), 

(222), (400), (331) and (420) in the 2-Theta range from 10º to 90º. All sintered specimens have 

profile residual (Rp) and weighted profile residual (Rwp) of less than 5%, indicating that the 

specimens are pure single-phase defective fluorite structures. The refined crystallographic data 

of representative compounds are given in Table S3. Also, the refined space group and unit cell 

parameters are given in Table S1. Compared with low-entropy RETaO7 ( ), the 0.56 BS k 

XRD peaks of the medium- and high-entropy ( ) components integrally shift to lower 1.0 BS k 

2-Theta, corresponding to bigger lattice constants shown in Table S1. This can be attributed to 

the fact that the interplanar spacing in high-entropy components increases as the ionic radius 

of trivalent cation (the radii of Y3+, Dy3+, Er3+, Ho3+, in eight-fold coordination are 1.019Å, 

1.027Å, 1.004Å, 1.015Å).  

Microstructure and mechanical properties

It can be seen in Fig. S2 that all sintered samples are dense with clear grain boundary. 

Additionally, the measured relative densities (ρ/ρ0) of all sintered RE3TaO7 specimens shown 

in Table S4 are above 90%, indicating that almost completely dense specimens were obtained. 

The measured average grain size (~2 μm) and mechanical properties of all sintered samples are 

also listed in Table S4. Obviously, the Young's modulus of all RE3TaO7 specimens are lower 

than those of the classical YSZ and La2Zr2O7, suggesting that RE3TaO7 compositions exhibit 

outstanding stress tolerance. The compositional uniformity of all sintered specimens was 

characterized by surface EDS mapping. As show in Fig.2, all the elements distribute 
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homogenously and no elements segregation can be found in all samples. Therefore, the XRD 

patterns, SEM image, and EDS mapping unanimously confirm that single-phase defective 

fluorite RE3TaO7 ceramics have been successfully prepared.

Fig.S1 XRD Rietveld refinements for the fluorite cell performed for (A) 1RETaO7, (B) 

3RETaO7, (C) 4RETaO7, and (D) 5RETaO7. The insets show their crystal structure, 

respectively.
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Fig. S2 The SEM images and EDS mappings of (A) 1RETaO7, (B) 3RETaO7, (C) 4RETaO7, 

and (D) 5RETaO7.
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Table S1. Potential parameters for RE3TaO7 used in this study 20-22.

Species A (eV) ρ(Å) C (eV·Å6)
O‒O 9547.96 0.2192 32.00
O‒Ta 1315.57 0.3690 0.00
O‒Y 1766.40 0.33849 19.43
O‒Dy 1767.64 0.3376 10.94
O‒Er 1678.21 0.33781 10.81
O‒Ho 1726.29 0.33776 10.72
O‒Yb 1649.80 0.3386 16.57

* For atomic pairs not listed in the table, only the Columbic term is included. (i.e. A=C=0).

Table S2. Measured and calculated unit cell parameters for the sintered RE3TaO7 systems. Here, the calculated lattice constants of the RE3TaO7 systems were 

obtained based on the Buckingham potential.

a (Å)
Composition Abbreviation S Space group

Exp. Cal. Error
Rp Rwp

Yb3TaO7 1RETaO7 0.56 kB 3Fm m 5.192 5.226 0.65% 1.06 1.86

(Y1/3Yb1/3Dy1/3)3TaO7 3RETaO7 1.39 kB 3Fm m 5.236 5.272 0.69% 1.17 1.90

(Y1/4Yb1/4Dy1/4Er1/4)3TaO7 4RETaO7 1.60 kB 3Fm m 5.239 5.288 0.94% 1.10 1.78

(Y1/5Yb1/5Dy1/5Er1/5Ho1/5)3TaO7 5RETaO7 1.77 kB 3Fm m 5.224 5.261 0.71% 1.18 1.91
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Table S3. Crystallographic Data for Disordered Defect Fluorite RE3TaO7.
atom site x y z U(Å2) occ.

1RETaO7 (Yb3TaO7) Defect Fluorite (space group:  )3Fm m
Yb 4a 0 0 0 0.003 0.750
Ta 4a 0 0 0 0.003 0.250
O 8c 0.250 0.250 0.250 0.023 0.868

3RETaO7 ((Y1/3Dy1/3Yb1/3)3TaO7) Defect Fluorite (space group:  )3Fm m
Y 4a 0 0 0 0.001 0.250
Dy 4a 0 0 0 0.001 0.250
Yb 4a 0 0 0 0.001 0.250
Ta 4a 0 0 0 0.001 0.250
O 8c 0.250 0.250 0.250 0.003 0.871

4RETaO7 ((Y1/4Dy1/4Er1/4Yb1/4)3TaO7) Defect Fluorite (space group:  )3Fm m
Y 4a 0 0 0 0.001 0.188
Dy 4a 0 0 0 0.001 0.188
Er 4a 0 0 0 0.001 0.188
Yb 4a 0 0 0 0.001 0.188
Ta 4a 0 0 0 0.001 0.250
O 8c 0.250 0.250 0.250 0.023 0.870

5RETaO7 ((Y1/5Dy1/5Ho1/5Er1/5Yb1/5)3TaO7) Defect Fluorite (space group:  )3Fm m
Y 4a 0 0 0 0.001 0.150
Dy 4a 0 0 0 0.001 0.150
Er 4a 0 0 0 0.001 0.150
Ho 4a 0 0 0 0.001 0.150
Yb 4a 0 0 0 0.001 0.150
Ta 4a 0 0 0 0.001 0.250
O 8c 0.250 0.250 0.250 0.031 0.872

* Oxygen vacancy concentration expressed as 1-occ.(O)
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Table S4. Measured grain size, density, sound velocity, Grüneisen parameter γ, and Young's modulus E0 RE3TaO7 specimens. Theoretical sound 

velocity, γ and E of RE3TaO7 were obtained by using the General Utility Lattice Program (GULP) package with the Buckingham potential.

Sound velocity (m/s) Grüneisen parameter γ
Young's modulus E 

(GPa)Composition
Grain size 

(μm)

ρ0 

(g/cm3)

ρ

(g/cm3)

Relative 

density (%)
Exp. Cal. Exp. Cal. Exp. Cal.

1RETaO7 2.95±0.24 9.63 9.42 97.8% 3762 3870 1.73 1.63 199 184

3RETaO7 1.61±0.20 8.30 7.50 90.4% 3636 4133 1.60 1.56 197 203

4RETaO7 2.40±0.18 8.51 8.16 95.9% 3770 3842 1.54 1.59 201 211

5RETaO7 2.29±0.33 8.70 7.90 90.8% 3887 3884 1.71 1.60 234 215
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3. Additional thermophysical properties

Thermophysical property measurement

The specific heat capacity (Cp) of RE3TaO7 ceramics measured by the DSC and calculated 

by the Neumann-Kopp rule at 300−1773 K is presented in Fig. S3 (A). For the family of 

RE3TaO7 ceramics, the Cp values calculated by the Neumann-Kopp rule are slightly lower than 

those measured by the DSC, but they show a similar variation tendency with increasing 

temperature. In this study, the Cp values calculated by Neumann-Kopp rule are used for 

subsequent calculation of κ. The thermal diffusivity (λ) of RE3TaO7 ceramics shows a 

temperature-independent at 300−1773 K, as shown in Fig. S3 (B).

Fig. S3 (A) specific heat capacity properties (calculated by Neumann-Kopp (Dotted line) rule 

and differential scanning calorimetry (DSC) (Solid line)) and (B) thermal diffusion 

coefficients of RE3TaO7 ceramics.

4. Verification of molecular dynamics data 

Before the calculation, the accuracy of force field and methodology used in this study was 

first verified. For the purpose, the calculated lattice constants and mechanical properties were 

compared with the experimental results respectively. It can be seen in Table S1 that the 

calculated lattice constants are in good agreement with the experimental values, and the relative 

errors are all less than 1%, indicating that the crystal structures of RE3TaO7 systems can be 

correctly described in this study. The Grüneisen parameter is an important thermophysical 

property to describe the anharmonic strength of phonon modes in solid materials. As shown in 

Table S4, the calculated γ is also in good agreement with the experimental values. In addition, 
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the mechanical properties related to heat transfer are also calculated. Again, the calculated 

Young's modulus are in good agreement with the experimental values. In conclusion, the 

excellent agreement between the calculated and experimental results confirms that the atomic 

models and the force field parameters adopted in this study are applicable to study the inherent 

heat transport in RE3TaO7 systems.

Having verified model and force field parameters, the intrinsic thermal conductivities of 

RE3TaO7 were calculated using the EMD-GK method. To obtain accurate κ, the simulation 

time needs to be examined first. Taking 3RETaO7 as an example, Figs. S4 (A) and S4 (B) show 

the variation in heat current autocorrelation function (HCACF) and κ as a function of the 

simulation correlation time, noting that the results here are averages after 10 independent 

calculations. It can be seen that the HCACF decays with the increase in the correlation time, 

while κ tends to converge, which is consistent with the fluctuation dissipation theory. Thus, the 

20 ps correlation time used in this study is sufficient to obtain a converged κ. Subsequently, 

the effect of supercell size on was investigated as show in Fig. S4 (C), and it can be seen that 

the κ of supercell size was always oscillated near a certain value, which was consistent with 

the knowledge that the size effect could be eliminated in EMD-GK method. In summary, the 

supercell and the correlation time used in the calculation used in this study is reliable.

Fig. S4. Calculation of thermal conductivity: (A) Normal HCACF and (B) thermal conductivity 

as a function of the simulation time; (C) Thermal conductivity as a function of the supercell 

size (N×N×N).

5. Additional results from first-principles calculations 
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To consider the effect of spin polarization on the system, we plotted the equation of state 

(EOS) for spin polarization and non-spin polarization as shown in Fig. S5(A), and it can be 

found that the energy of the system with spin polarization is almost unchanged compared with 

that of non-spin polarization, and there is no net magnetic moment of the system. The band 

structure is shown in Fig. S5(B), and there is a band gap of 2.8749 eV in the system, indicating 

that the material is not metallic. Combining the lattice constants, EOS under spin polarization 

and non-spin polarization, and the band structure, it is concluded that the calculated parameters 

and pseudopotentials used are sufficiently accurate.

Fig. S5 (A) Equation of state for non-spin polarization and spin polarization, (B) the band 

structure of 5RETaO7.

Table S5 Calculated Atom-atom distance of 5RETaO7.

O atom RE atom Atom-atom distance, Å

O36 Dy1 2.27333

O42 Dy1 2.30598

O57 Dy1 2.27231

O64 Dy1 2.39864

O69 Dy1 2.25597

O76 Dy1 2.17042

O85 Dy1 2.16103
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O38 Dy2 2.249

O45 Dy2 2.24732

O52 Dy2 2.57789

O59 Dy2 2.57326

O62 Dy2 2.35345

O69 Dy2 2.51424

O76 Dy2 2.18832

O83 Dy2 2.19003

O36 Dy3 2.32501

O43 Dy3 2.18107

O57 Dy3 2.31232

O67 Dy3 2.28354

O74 Dy3 2.51805

O81 Dy3 2.198

O88 Dy3 2.44385

O34 Dy4 2.41055

O43 Dy4 2.25931

O50 Dy4 2.59138

O55 Dy4 2.51207

O62 Dy4 2.37106

O71 Dy4 2.26592

O78 Dy4 2.24168

O83 Dy4 2.16955

O33 Dy5 2.34751

O37 Dy5 2.43837

O41 Dy5 2.25245

O48 Dy5 2.19463

O65 Dy5 2.19993

O72 Dy5 2.39731

O38 Y6 2.21587
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O47 Y6 2.28279

O54 Y6 2.36411

O59 Y6 2.58174

O66 Y6 2.52117

O74 Y6 2.38794

O81 Y6 2.24861

O86 Y6 2.28648

O38 Y7 2.228

O45 Y7 2.19814

O51 Y7 2.23279

O58 Y7 2.51281

O65 Y7 2.64681

O72 Y7 2.60961

O79 Y7 2.33487

O86 Y7 2.36709

O44 Y8 2.58964

O51 Y8 2.18388

O58 Y8 2.38331

O61 Y8 2.29108

O68 Y8 2.25019

O75 Y8 2.17524

O82 Y8 2.34038

O34 Y9 2.26469

O43 Y9 2.25437

O49 Y9 2.31121

O53 Y9 2.63476

O65 Y9 2.31852

O81 Y9 2.17727

O86 Y9 2.2414

O39 Ho10 2.41595
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O44 Ho10 2.19904

O51 Ho10 2.20412

O60 Ho10 2.24173

O72 Ho10 2.23295

O87 Ho10 2.24984

O40 Ho11 2.36774

O45 Ho11 2.26367

O51 Ho11 2.24016

O60 Ho11 2.60593

O63 Ho11 2.87606

O68 Ho11 2.33949

O76 Ho11 2.14394

O85 Ho11 2.2574

O35 Ho12 2.27828

O41 Ho12 2.28738

O57 Ho12 2.16475

O67 Ho12 2.3269

O73 Ho12 2.31435

O87 Ho12 2.24595

O33 Ho13 2.42241

O49 Ho13 2.26983

O61 Ho13 2.1035

O70 Ho13 2.35358

O77 Ho13 2.3742

O82 Ho13 2.24834

O33 Ho14 2.36608

O41 Ho14 2.43301

O55 Ho14 2.33267

O62 Ho14 2.25196

O69 Ho14 2.22419
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O75 Ho14 2.31531

O82 Ho14 2.39097

O36 Yb15 2.2464

O43 Yb15 2.22134

O49 Yb15 2.32422

O56 Yb15 2.76663

O63 Yb15 2.25119

O78 Yb15 2.13361

O85 Yb15 2.14012

O38 Yb16 2.21517

O47 Yb16 2.15633

O58 Yb16 2.51563

O61 Yb16 2.31456

O70 Yb16 2.29138

O78 Yb16 2.14499

O83 Yb16 2.17517

O39 Yb17 2.56913

O46 Yb17 2.35732

O54 Yb17 2.24047

O67 Yb17 2.16285

O74 Yb17 2.26082

O80 Yb17 2.49371

O87 Yb17 2.29321

O35 Yb18 2.05307

O49 Yb18 2.23168

O53 Yb18 2.38222

O56 Yb18 2.16926

O80 Yb18 2.26083

O87 Yb18 2.2024

O34 Yb19 2.32173



18

O42 Yb19 2.41749

O48 Yb19 2.20718

O61 Yb19 2.20169

O68 Yb19 2.21474

O76 Yb19 2.11253

O83 Yb19 2.15288

O39 Ta20 2.25178

O60 Ta20 1.97971

O63 Ta20 1.88836

O70 Ta20 1.90869

O77 Ta20 2.09448

O84 Ta20 2.10622

O39 Ta21 2.15602

O52 Ta21 2.00771

O64 Ta21 1.93233

O69 Ta21 2.02833

O75 Ta21 1.94283

O84 Ta21 2.05162

O36 Ta22 1.98309

O42 Ta22 2.21611

O48 Ta22 2.06176

O56 Ta22 2.00571

O72 Ta22 2.11432

O79 Ta22 2.18246

O88 Ta22 2.01276

O37 Ta23 2.17615

O46 Ta23 1.95884

O53 Ta23 1.93003

O58 Ta23 1.92727

O65 Ta23 2.02442
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O80 Ta23 2.19933

O37 Ta24 2.05736

O44 Ta24 1.88539

O52 Ta24 2.1881

O59 Ta24 1.94864

O66 Ta24 2.1692

O73 Ta24 1.91691

O46 Ta25 2.31914

O54 Ta25 2.03792

O59 Ta25 2.25106

O62 Ta25 1.9682

O71 Ta25 1.98765

O77 Ta25 2.09793

O82 Ta25 2.03726

O34 Ta26 1.92974

O42 Ta26 2.02429

O55 Ta26 2.01449

O66 Ta26 2.16777

O79 Ta26 2.03137

O86 Ta26 1.93766

O33 Ta27 2.20395

O37 Ta27 2.28091

O50 Ta27 1.88074

O55 Ta27 2.36302

O66 Ta27 2.11592

O74 Ta27 1.97231

O80 Ta27 2.02244

O35 Er28 2.5025

O41 Er28 2.28153

O48 Er28 2.50869
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O56 Er28 2.31124

O63 Er28 2.24919

O68 Er28 2.19057

O75 Er28 2.71612

O84 Er28 2.28429

O40 Er29 2.15605

O45 Er29 2.12577

O52 Er29 2.45873

O67 Er29 2.26055

O73 Er29 2.49708

O79 Er29 2.29373

O88 Er29 2.34515

O35 Er30 2.17297

O50 Er30 2.28863

O57 Er30 2.20193

O64 Er30 2.31329

O71 Er30 2.26333

O77 Er30 2.29574

O84 Er30 2.28251

O40 Er31 2.17947

O47 Er31 2.1831

O54 Er31 2.4298

O64 Er31 2.33847

O71 Er31 2.23703

O78 Er31 2.22887

O85 Er31 2.18214

O40 Er32 2.18076

O47 Er32 2.09062

O53 Er32 2.32105

O60 Er32 2.30623
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O81 Er32 2.1496

O88 Er32 2.24539

The force constants between various atoms decrease with the atom-atom distance is shown 

by Fig. S6. The variation pattern of force constants with atom-atom distance is consistent with 

that of -ICOHP. the force constants between O-Ta have higher force constants at shorter bond 

lengths, but decrease rapidly with increasing bond lengths, and overlap with those of O-RE in 

the range of 2.0 Å-2.4 Å, which reflects a degree of continuity characteristic of the force 

constant values within the crystal. The low force constants inside the crystal are basically 

contributed by O-RE, the average force constant of O-Ho is the lowest in the system, while the 

average force constants of O-Dy, O-Er, and O-Yb show a stepwise rise. The combined results 

of -ICOHP and force constants show that O-RE has the weakest bond within the system and 

that the bond strength varies between different rare earth ions and O. The covalency of O-Dy 

is the weakest among O-RE, while the energy potential change of O-Ho bond after deviation 

from the equilibrium scale is the smallest, which mirrors its weaker stiffness. The -ICOHP and 

force constants of O-Yb are the highest among O-RE, while O-Er lies in the middle.

Fig. S6 The force constants between various atoms in 5RETaO7 as a function of atom-atom 

distance, and average value of force constant between O-Dy, O-Er, O-O-Yb, O-Ho.
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6. Recognition of phonon vibration modes 

According to the results in Fig. 3, the large gap between the κ obtained from BTE theory and 

the experimental results indicates that normal phonon transport under conventional picture 

cannot accurately describe the thermal conduction in defective fluorite tantalates. To illustrate 

the above issue, the phonon dispersion relationship with phonon linewidth in four different 

tantalate components was calculated using the phonon SED, as which based on classical MD 

can fully incorporate the complete lattice anharmonicity and allow for explicit treatment of 

disorder.

Fig. S7 Calculated SED for fluorite structures (A) 1RETaO7, (B) 3RETaO7, (C) 4RETaO7 at 

300 K. (D)-(F) corresponds to their SED in the frequency domain at reduced wave vector q 

(0.125, 0.00, 0.00) respectively.

Actually, RE3TaO7 can be regarded as a substitutional compound where the trivalent RE3+ 

ions dope into the Ta2O5. To maintain the systems electro-neutrality, the substitution process 

is accompanied by the creation of oxygen vacancies. According to Kröger–Vink notation, the 

process of the RE2O3 alloying the Ta2O5 can be expressed as:

\* MERGEFORMAT (17)2 5Ta O ''
2 3 Ta ORE O  2RE 3O 2Vo

   gg

Clearly, the concentration of oxygen vacancies in RE3TaO7 is significantly greater than that of 

7YSZ (~2%). High concentration of oxygen vacancies will strongly enhance the phonon 

scattering and affect the nature of phonons. It is known to all that phonon scattering rate is an 

important factor affecting phonon heat transfer, which can be described by Matthiessen's rule:
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\* MERGEFORMAT (18)
total( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1

U D M G e ph           

    

where , , , , and  are phonon lifetimes due to the three-phonon ( )U  ( )D  ( )M  ( )G  ( )e ph  

Umklapp scattering, defect scattering, mass-difference scattering, grain boundary scattering, 

and electron-phonon scattering, respectively. The grain size of the sample in this study is about 

2 μm (Table S4 and Fig S2). If the phonon MFP is much smaller than the grain size, the 

boundary scattering can also be ignored. spectral energy distribution (SED) of crystal lattice 

vibration could be calculated according to the molecular motion trajectory in MD simulation 

[111]. The phonon lifetime can be estimated from the SED. By Lorentz function fitting for 

SED with transverse acoustic branch mode about 0.6 THz, as shown in Fig. S8, the full width 

at half maximum (FWHM) of its vibration frequency is about 0.029 THz, then the 

corresponding phonon lifetime is 1.8×10-10 s, and the phonon MFP of is 684nm. This shows 

that even for low-frequency propagators, the mean free path is much smaller than the grain 

size, so boundary scattering can be ignored. Meanwhile, electron-phonon scattering is also 

ignored because rare earth tantalates are electronic insulating materials. Therefore, the above 

formula is simplified as:

\* MERGEFORMAT (19)
total( ) ( ) ( ) ( )

1 1 1 1

U D M      

  

The Umklapp scattering is given by Klemens expression 23,24:

\* MERGEFORMAT (20)
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where S, V0, and  denote the share modules, volume per atom, and Debye frequency, D

respectively. The shear modulus is calculated by . The vacancies are strong 0 (2 2 )S E  

phonon scatterer because of missing mass and missing interatomic linkages. According to the 

perturbation theory, the vacancy-defect scattering can be expressed as 25:

\* MERGEFORMAT (21)
22
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DOS( )1
4D

c M
N M

 



 


   
 

where c, N, and  are defined as concentration of vacancy defects, number of atoms DOS( )

in the unit cell, and normalized phonon density of states, respectively. The DOS was obtained 
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by the Fourier transform of the calculated velocity autocorrelation function (VACF) in 

molecular dynamics simulation 26:

\* MERGEFORMAT (22)DOS( ) VACF( )i te t dt



 

Here, VACF(t) was given by the following:

\* MERGEFORMAT (23)
1

1VACF( ) (0) ( )
N

i i
i

t t
N

 


 

where N is the number of atoms in the system,  is the velocity vector at time t in the ( )i t

microcanonical ensemble (NVE), and  denotes the ensemble average. The effective value 

of  is defined as 27:M
M


\* MERGEFORMAT (24)V 2MM
M M


  

where  and  are the average mass per atom and mass of the defective atom, respectively. M VM

The term -2 represents the potential energy of the missing linkages. Mass-difference scattering 

is due to the difference in mass, which can be obtained from the following expression 24:

\* MERGEFORMAT (25)
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where  is phonon group velocity. The Γ term is the measure of mass difference scattering gv

intensity defined as:

\* MERGEFORMAT (26)
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Here  is the fraction concentration of the impurity atoms of mass . Note that the total if iM

phonon lifetime ( )  was obtained by fitting the SED peak value with Lorentz function total( )

as follows 6:

\* MERGEFORMAT (27)
 2

( , )
1 ( ) /c
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q

where I, , and  denote the peak height of the SED, the frequency of the peak center, and c 

the half width at half maximum of the peak, respectively. The  can be obtained from total( )
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. It should be noted that the phonon eigenvectors were included in the SED calculation in 1/ 2

this study, thus only peaks corresponding to specific modes can be found automatically.

Fig. S8 5RETaO7 SED distribution. The black circle is the result of SED, and the red solid line 

is the fitting curve of Lorentz function.

Fig. S9 Defect scattering rate, mass-difference scattering rate, Umklapp scattering rate, and 

total scattering rate in (A) 1RETaO7, (B) 3RETaO7, (C) 4RETaO7.

To directly understand the effect of this inhomogeneous interatomic bonding on phonon 

modes, phonon dispersion relationships in one-dimensional (1D) diatomic chains in the first 

Brillouin zone containing mass difference and interatomic bond energy difference were 

calculated, as shown in Figs. S10 (A) and (B).
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Fig. S10 The phonon dispersion relationship of one-dimensional diatomic chain in the first 

Brillouin zone with (A) different mass and (B) different interatomic binding.

Recognition of phonon vibration modes

To intuitively understand these modes, the phonon eigenvectors is normalized into a unit 

sphere of polarization 28:

\* MERGEFORMAT (28)
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e
e e

where  is the eigenvector of atom i along the α direction, and the superscript ‘*’ represents ,i e

the complex conjugate transpose of . Each normalized eigenvector is plotted as a point on ,i e

the polarization sphere, as shown in Fig. S11.
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Fig. S11 Polarization of phonon modes of (A) 1RETaO7, (B) 3RETaO7, (C) 4RETaO7 in 

frequency domains below 0.5 THz, 2.5 THz, and 25 THz.

The localized mode of phonons can be identified using phonon participation ratio (PR) 29:

\* MERGEFORMAT (29)
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e e

e e

where N is the total of atoms. If all atoms in the simulation system contribute to a given phonon 

modes, the value of PR approaches 1. Conversely, if a small fraction of atoms is associated 

with a given mode, the mode is characterized to be localized (i.e., locons), and the 

corresponding PR value less than 0.1. As shown in Fig. S12, the majority of phonon modes in 

defective fluorite tantalate structures have moderate PR values between 0.1 and 0.5, indicating 

that most phonons are delocalized. However, some phonon modes at high frequencies are 

localized, which is associated with phonon scattering by oxygen vacancies and mass 

differences. Also, such localized modes have no contribution to thermal conduction. To further 

investigate which atomic species are involved in specific vibration modes, the total PR were 

projected onto different atomic species:

\* MERGEFORMAT (30)
2

, , ,PR PRg i i
i g

     




 
  

 
e e

As shown in Fig. S12 (A), phonon modes with frequencies below 6 THz in 1RETaO7 are 

mainly driven by the vibration of the Yb atom, while the remaining phonon modes is primarily 

attributed to the vibration of the O atom. Moreover, the vibration of the Ta atom in the entire 

phonon spectrum is localized.
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Fig. S12 Total phonon participation ratio for (A) RETaO7, (B) 3RETaO7, and (C) 4RETaO7. 

(D)-(F) represent projected participation ratio of the different atomic species.

The eigenvector periodicity (EP) parameter, developed by Seyf and Henry 30, measures the 

periodicity of an arbitrary mode compared to completely wavelike modes, enabling the 

differentiation between propagons and diffusons:
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(31)

where  denotes the eigenvector of the fictitious mode,  denotes the position of the i-th ,i s ( )i jr

(j-th) atom in the mode λ, and the subscript index o denotes the equilibrium position. Function 

f is the periodic function chosen for comparison. It is noted that any spatially oscillating 

function, such as , , etc. will get the same results after properly  sin io  q r  cos io  q r

normalization. In the study,  was used to calculate EP. Generally, if a mode has  cos io  q r

an EP > 0.2, it can be considered a propagon. The boundary that distinguishes between 

propagons and diffusions is typically known as the Ioffe-Regel transition (IRT). As illustrated 
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in Fig. S13, only a limited number of modes below 1.7 THz can be considered propagons, 

which is consistent with the SED analysis. It can also be observed that the IRT value does not 

decrease significantly after high entropy. However, for diffusons (EP < 0.2), the EP value 

decreases with the enhancement of the high entropy effect and the phonon modes exhibit a 

strong randomness, which is consistent with the present findings.

Fig. S13 Eigenvector periodicity of the phonon modes in (A) 1RETaO7, (B) 3RETaO7, and 

(C) 4RETaO7.

7. Multimodal phonon thermal transport 

The propagons-contributed thermal conductivity (κP) can be determined using the phonon 

BTE, while the diffusons-contributed thermal conductivity (κD) can be described using the 

Allen-Feldman (A-F) diffusion theory 31:

\* MERGEFORMAT (32)D
1= C D
V  

 
where Cλ and Dλ are specific heat capacity and diffusivity of phonon mode λ. The sum is 

evaluated over all diffusons belonging to the Ioffe–Regel regime. Dλ was defined as:

\* MERGEFORMAT (33) 
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where is the off-diagonal term of the heat-current operator calculated from the LD theory, 
1S

δ is the Dirac function. As shown in Fig.S14, the contribution of the propagons in 1RETaO7, 

3RETaO7, 4RETaO7 and 5RETaO7 to the overall κ is 31.5%, 22%, 17.7% and 9.4%, 

respectively.
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Fig. S14 Mode decomposition of the thermal conduction for (A) 1RETaO7, (B) 3RETaO7, and 

(C) 4RETaO7 at 300K

Multimodal phonon transport at different temperatures was investigated, as shown in Fig. S15.

Fig. S15 Temperature dependent modal thermal conductivity for (A) 1RETaO7, (B) 3RETaO7, 

(C) 4RETaO7.
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