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Supporting Tables and Figures

Composition of the hydrogels. The concentration of BC suspension was measured at 

1 wt%. The hydrogel is named PAM-BC/[EMIM]Clx in Table S1, where x represents 

the fraction of the absolute dry mass of BC to the mass of AM.

Table S1. Composition of the hydrogels.

Name (Abbreviation)
AM
(g)

[EMIM]Cl
(g)

BC(g)
1wt%

MBAA
(g)

APS(g) Water(g)

PAM-
BC/[EMIM]Cl0

4 0.8 0 0.004 0.04 15.16

PAM-
BC/[EMIM]Cl5

4 0.8 2 0.004 0.04 13.16

PAM-
BC/[EMIM]Cl7.5

4 0.8 3 0.004 0.04 12.16

PAM-
BC/[EMIM]Cl10

4 0.8 4 0.004 0.04 11.16

PAM-
BC/[EMIM]Cl12.5

4 0.8 5 0.004 0.04 10.16

PAM-
BC/[EMIM]Cl15

4 0.8 6 0.004 0.04 9.16



Figure S1. Diagram of the hydrogel polymerization process.

Figure S2. The zeta potential of BC.



Figure S3. SEM microscopic topography of the ionic sensing hydrogel after freeze-drying

Figure S3a-d show the cross-sectional morphology of lyophilized ion-sensing hydrogels with 

BC additions of 0 wt‰/7.5 wt‰/10 wt‰/12.5 wt‰ (relative to the weight of AM), respectively. 

As the proportion of BC in the material increases, the gel network undergoes significant 

densification. A proper network structure not only increases the mechanical properties of the gel, 

but also provides pathways for ion migration.

Figure S4. Thermogravimetric analysis of hydrogels with different BC content. (a) 
Thermogravimetric weight loss profiles for PAM-BC/[EMIM]Cl 0/5/10. (b) Heat loss rate profiles 

for PAM-BC/[EMIM]Cl0/5/10.

Thermogravimetric experiments were conducted on hydrogels with varying BC contents. 

Analysis of the thermal weight loss curves and thermal weight loss rate curves depicted in Figure 



S4 reveals that the inclusion of BC significantly improves the thermal stability of the hydrogels. 

This enhancement can be attributed to two primary factors. Firstly, the formation of a three-

dimensional network within the gel, facilitated by BC, contributes to the overall improvement in 

thermal stability. Secondly, the hydroxyl groups in BC exhibit robust water retention properties, 

effectively slowing down the rate of water loss from the gel.

Figure S5. DSC profiles of hydrogels with different [EMIM]Cl additions..
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Figure S6. The addition of ionic liquid ([EMIM]Cl) to the mechanical properties of hydrogels.

As shown in Figure S2, the stress-strain images of hydrogels with different [EMIM]Cl 

additions are shown. The addition amount of BC is fixed at 10‰ of AM, and the amount of 

[EMIM]Cl is changed to 0.4, 0.6, 0.8, 1 g, respectively. With the increase of ionic liquid, the 

hydrogen bond and electrostatic interaction sites in hydrogel increased, which significantly 



enhanced the mechanical properties of hydrogel. However, the addition of too much ionic liquid 

increases the stress of the gel and decreases the strain of the hydrogel. As shown in Figure S2, the 

stress-strain images of hydrogels with different [EMIM]Cl additions are shown. The addition 

amount of BC is fixed at 10‰ of AM, and the amount of [EMIM]Cl is changed to 0.4,0.6,0.8, 1 g, 

respectively. With the increase of ionic liquid, the hydrogen bond and electrostatic interaction sites 

in hydrogel increased, which significantly enhanced the mechanical properties of hydrogel. 

However, the addition of too much ionic liquid increases the stress of the gel and decreases the 

strain of the hydrogel.
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Figure S7. Dynamic viscoelasticity properties at 25 °C: angular frequency dependence of G′ and 

G″ (ω=10-1-102 rad/s).

The viscoelastic properties of the hydrogel are shown in Figure S3. Changes of dynamic 

storage modulus G 'and loss modulus G "for hydrogels with different BC content in the frequency 

range of 10-1-102 rad/s. As expected due to the increased degree of interpenetration and non-covalent 

crosslinking of BC and [EMIM]Cl in the polymer network, G 'and G' significantly increased with 

the increase of BC over the frequency range. In the frequency range, the G "of all hydrogels is much 

higher than G", which is consistent with the solid elastic properties of hydrogels. PAM-



BC/[EMIM]Cl10 had the highest G 'and G'.
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Figure S8. G 'and G "of PAM-BC/[EMIM]Cl10 with strain dependence (ω = 1.0 Hz).

PAM-BC/[EMIM]Cl10 was selected as the sample for strain scanning measurement. In the < 

100% linear viscoelastic region, the G "of the hydrogel is always greater than G". Under large shear 

strain (> 100%), the hydrogel exhibited nonlinear viscoelastic behavior. G "and G" cross, which 

was due to the breakdown of the internal network of the hydrogel. The intersection strain of PAM-

BC/[EMIM]Cl10 was appeared at 109.1%. The addition of BC makes the hydrogel not easy to be 

induced by shear force and strain, resulting in large-scale deformation of the network structure and 

unentanglement of crosslinking points, thus obtaining superior mechanical properties. The above 

results are consistent with those of tensile test.
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Figure S9. G 'and G "of PAM-BC/[EMIM]Cl10 with time (ω = 1.0 Hz; Strain :50%).

Figure S5 shows the excellent stability of PAM-BC/[EMIM]Cl10 hydrogel. Thanks to the 

stability of the internal network of the hydrogel, G "and G" did not change significantly during the 

rheological test for 5 min.
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Figure S10. Relative resistance at different tensile rates (25-200 mm·min−1) at 200% strain.

Figure S6 shows the (R-R0)/R0 values of PAM-BC/[EMIM]Cl10 hydrogel under 200% strain 

at different tensile speeds. The (R-R0)/R0 values at different stretching speeds (25-200 mm·min−1) 

did not change significantly, indicating that the sensing properties of hydrogel stability were not 

affected by the stretching speed. 



Figure S11. Water retention capacity of hydrogels at ~25±2°C and ~60±5% humidity versus 
water retention time.  

Figure S12. Demonstration of the PAM-BC/[EMIM]Cl10-based e-skin applied for typewriting

and Depicting pictures by applying PAM-BC/[EMIM]Cl10 as a touch screen pen.



Table S2. Comparison of BC-based ion sensing hydrogels in this paper with related 

sensing gel literature.[1-10]

Gel Conductors
Stress

(kPa)

Strain

(%)

Conductivity

(mS cm-1)
Label name Reference

PAM-BC/[EMIM]Cl 385.1 3271 2.23 This work

  MXene/PHMP 110 680 0.15 He [1]

 PNAGA-NP 728 436 0.26 Zhang [2]

PGMS 95 2600 8.5 Ma [3]

SAIFs 1550 161 2.29 Tong [4]

3A-ADSP-LiCl 399 770 2.9 Wang [5]

OGTCG 152 225 2.3 Cui [6]

PNAGA/PNIPAm/AgNW 350 1800 — Ge [7]

CNF/ PEDOT:PSS/PAM 240 1881 — Wang [8]

OH-PAM-PB-PPy 50 510 1.2 Bei [9]

PAA/PANI 120 2830 1.4 Liu [10]

Figure S13. Radar chart comparing this paper with related literature.[3, 9, 11, 12]
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