## High-Performance and Self-Powered Visible Light Photodetector using Multiple Coupled Synergetic Effects

José P. B. Silva<sup>1,2 δ\*</sup>, Eliana M. F. Vieira<sup>3,4δ</sup>, Katarzyna Gwozdz<sup>5</sup>, Nuno E. Silva<sup>1,2</sup>,

Adrian Kaim<sup>5</sup>, Marian C. Istrate<sup>6,7</sup>, Corneliu Ghica<sup>6</sup>, José H. Correia<sup>3,4</sup>, Mario Pereira<sup>1,2</sup>,

Luís Marques<sup>1,2</sup>, Judith L. MacManus-Driscoll<sup>8\*</sup>, Robert L. Z. Hoye<sup>9</sup>, Maria J. M.

Gomes<sup>1,2</sup>

<sup>1</sup>Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

<sup>2</sup>Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal

<sup>3</sup> CMEMS – UMinho, University of Minho, Campus de Azurem, 4804-533 Guimarães, Portugal

<sup>4</sup>LABBELS – Associate Laboratory, Braga, Guimarães, Portugal

<sup>5</sup>Department of Quantum Technologies, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland

<sup>6</sup>National Institute of Materials Physics, 105 bis Atomistilor, 077125 Magurele, Romania

<sup>7</sup>University of Bucharest, Faculty of Physics, Atomistilor 405, Magurele Ilfov 077125, Romania

<sup>8</sup>Dept. of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd., Cambridge, CB3 OFS, U.K.

<sup>9</sup>Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK

<sup>δ</sup>These authors contributed equally to this work.

\* Corresponding authors' e-mails: josesilva@fisica.uminho.pt and jld35@cam.ac.uk



**Fig. S1.** *I-t* curves for the Ag@20 sample at different chopper frequency, in the range 10-0.1 Hz, for a fixed power density of 877 mW/cm<sup>2</sup>.

| Sample | Dark current (nA) | Photocurrent (mA) |
|--------|-------------------|-------------------|
| Ag@0   | 270               | 0.47              |
| Ag@10  | 32.4              | 1.45              |
| Ag@20  | 7.6               | 1.99              |
| Ag@40  | 27.7              | 3.77              |
| Ag@80  | 73.7              | 1.43              |
| Ag@160 | 5.6               | 1.56              |

**Table S1.** Dark current and photocurrent values obtained through I-V and I-tmeasurements, respectively for the different samples.