Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Dual-enzyme decorated semiconducting polymer nanoagents for second near-infrared photoactivatable ferroptosis-immunotherapy

Yue Liu,[‡]^a Renjie Lu,[‡]^b Meng Li,^a Danling Cheng,^a Fengshuo Wang,^a Xiumei Ouyang,^c Yitian Zhang,^c

Qin Zhang,*d Jingchao Li*a and Shaojun Peng*c

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China. E-mail: jcli@dhu.edu.cn

^b Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.

^c Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong 519000, China. Email: henry2008_ok@126.com

^d Institute of Translational Medicine, Shanghai University, Shanghai 200444, China. Email: Sabrina_1985@shu.edu.cn

‡ These authors contributed equally to this work.

Fig. S1. Schematic of the synthetic routes of SP.

Fig. S2. ¹H NMR spectrum of SP in CDCl₃-D.

Fig. S3. Absorbance spectrum of SP (100 μ g/mL).

Fig. S4. (a) TEM image and hydrodynamic size of SP@Hb (5 μ g/mL). (b) Zeta potentials of Hb and SP@Hb (5 μ g/mL) (n = 5).

Fig. S5. (a) Hydrodynamic sizes of SP@Hb on different days in PBS (5 μ g/mL) (n = 5). (b) PDI of SP@Hb on different days in PBS solution (5 μ g/mL) (n = 5).

Fig. S6. Absorbance spectrum of SP@Hb (20 µg/mL).

Fig. S7. Temperature curves of SP@Hb (100 $\mu g/mL)$ and PBS solution under 1064 nm laser

irradiation.

Fig. S8. (a) Hydrodynamic sizes of SPH, SPH_G, and SPH_{GA} on different days in PBS solution (5 μ g/mL) (n = 5). (b) PDI of SPH, SPH_G, and SPH_{GA} on different days in PBS solution (5 μ g/mL) (n = 5).

Fig. S9. Zeta potential measurements of SPH, SPH_G and SPH_{GA} (5 μ g/mL) (n = 5).

Fig. S10. (a) Hemolysis analysis of blood red cells after incubations with SPH, SPH_G and SPH_{GA} at different concentrations for 2 h. (b) Hemolysis percentages of blood red cells after treatments (n = 3).

Fig. S11. Temperature change curves of (a) SPH, (b) SPH_G and (c) SPH_{GA} at different concentrations

under 1064 nm laser irradiation.

Fig. S12. Fluorescence intensity of ·OH probe for (a) SPH, (b) SPH_G and (c) SPH_{GA} under 1064 nm laser

irradiation for different times (25 μ g/mL).

Fig. S13. Evaluation of \cdot OH generation for SPH, SPH_G and SPH_{GA} (150 µg/mL) after 10 min of 1064 nm laser irradiation at different incubation time (n = 3).

Fig. S14. Mean fluorescence intensity of red signals for SPH-, SPH_{G} - and SPH_{GA} -treated cells (15

 μ g/mL) (n = 5).

Fig. S15. Cell viability analysis of SPH-, SPH_G- and SPH_{GA}-treated 4T1 cells (n = 5).

Fig. S16. Fluorescence intensity of the generated \cdot OH for various treated 4T1 cells (25 μ g/mL) (n = 5).

Fig. S17. The uncropped Western blot for Fig 3f.

Fig. S18. (a) Fluorescence imaging of tumors, livers, kidneys, spleens, lungs and hearts. (b) Analysis

of fluorescence intensity of major tissues (250 μ g/mL, 200 μ L) (n = 3).

Fig. S19. (a) Thermal imaging of tumor-bearing mice under irradiation of the tumors using 1064 nm laser. (b) Temperature change curves of tumors after injection of nanoparticles (250 μ g/mL, 200 μ L) under laser irradiation (1.0 W/cm², 5 min) (n = 3).

Fig. S20. The uncropped Western blot for Fig 5c.

Fig. S21. H&E staining images of heart, spleen and kidney in PBS and SPH_{GA} + laser groups (250 µg/mL,

200 μL).

Fig. S22. Body weights of tumor-bearing mice after treatments with PBS, SPH, SPH_G and SPH_{GA} (250

 μ g/mL, 200 μ L) and laser irradiation (1.0 W/cm², 10 min) (n = 5).

Fig. S23. Mean fluorescence intensity of CRT staining signals of primary tumors after treatments with

SPH, SPH_G and SPH_{GA} (250 μ g/mL, 200 μ L) and laser irradiation (1.0 W/cm², 10 min) (n = 5).

Fig. S24. Mean fluorescence intensity of HMGB1 staining signals of primary tumors after treatments

with SPH, SPH_G and SPH_{GA} (250 μ g/mL, 200 μ L) and laser irradiation (1.0 W/cm², 10 min) (n = 5).

Fig. S25. Gating strategy for flow cytometry analysis of matured DCs (CD80⁺CD86⁺).

Fig. S26. Gating strategy for flow cytometry analysis of matured CD3⁺CD8⁺ T cells.

Fig. S27. Flow cytometer analysis of CD3⁺CD8⁺ T cells in (a) primary tumors and (b) distant tumors after treatments with SPH, SPH_G and SPH_{GA} (250 μ g/mL, 200 μ L) and laser irradiation (1.0 W/cm², 10

min).

Fig. S28. Gating strategy for flow cytometry analysis of matured CD3⁺CD4⁺ T cells.

Fig. S29. Flow cytometer analysis of CD3⁺CD4⁺ T cells in (a) primary tumors and (b) distant tumors after treatments with SPH, SPH_G and SPH_{GA} (250 μ g/mL, 200 μ L) and laser irradiation (1.0 W/cm², 10 min).

Fig. S30. Gating strategy for flow cytometry analysis of T_{reg} cells.

Fig. S31. (a) Flow cytometer analysis of T_{reg} cells in (a) primary tumors and (b) distant tumors after

treatments with SPH, SPH_G and SPH_{GA} (250 μ g/mL, 200 μ L) and laser irradiation (1.0 W/cm², 10 min).

Fig. S32. The levels of (a) IL-6 and (b) TNF- α in serum of tumor-bearing mice after treatments with

SPH, SPH_G and SPH_{GA} (250 μ g/mL, 200 μ L) and laser irradiation (1.0 W/cm², 10 min) (n = 5).

Fig. S33. Units of IFN- γ spot in primary tumors and distant tumors after treatments with SPH, SPH_G and SPH_{GA} (250 µg/mL, 200 µL) and laser irradiation (1.0 W/cm², 10 min) (n = 3).