Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2024

Supporting Information

High-performance and self-powered polarization-sensitive photoelectrochemicaltype Bi₂O₂Te photodetector based on quasi-solid-state gel electrolyte

Song Yang, Shujie Jiao, * Yiyin Nie, Yue Zhao, Shiyong Gao, Dongbo Wang and

Jinzhong Wang

School of materials science and engineering,

Harbin Institute of Technology, Harbin, 150001, China.

*Email: shujiejiao@hit.edu.cn (S. Jiao)

S1. SEM and AFM images of Bi₂Te₃ nanosheets before phase transition

Fig. S1 a) SEM and b) AFM images of Bi₂Te₃ nanosheets before phase transition.

S2. Optical image of Bi₂O₂Te nanosheets deposited on a silicon substrate

Fig. S2 a) Optical image of Bi₂O₂Te nanosheets deposited on a silicon substrate.

S3. UV-Vis absorption spectrum of Bi₂O₂Te nanosheets

Fig. S3 UV-Vis absorption spectrum of Bi_2O_2Te nanosheets.

As shown in Fig. S3, there is light absorption in the wavelength range from 300 to 1100 nm, suggesting the potential application of Bi_2O_2Te nanosheets in UV-Vis-NIR optoelectronic devices.

S4. Transient photocurrent spike investigation under different illumination intensities

Fig. S4 Photoresponse curves under 470 nm illumination with incident power densities ranging from 0.18 to 15 mW cm⁻².

The photoresponse curves of the PEC-type Bi_2O_2Te photodetector under 470 nm illumination with different power densities are shown in Fig. S4. Clearly, the transient photocurrent spike of the PEC-type Bi_2O_2Te photodetector decreases significantly as the illumination power density decreases from 15 to 0.18 mW cm⁻².

S5. Photoresponse properties under pulsed light illumination with different frequencies

Fig. S5 a) Photoresponse curves of PEC-type Bi_2O_2Te photodetectors under pulsed light (405 nm) illumination at frequencies of 1 Hz and 50 Hz. b) Response speed at a switching frequency of 50 Hz.

The response speed of PEC-type Bi_2O_2Te photodetector to rapidly changing optical signals was characterized by an oscilloscope. As shown in Fig. S5 b, the rise/fall times of the photodetector are 4.4/6.9 ms under 405 nm illumination at a frequency of 50 Hz.

S6. Intensity of 520 nm laser at different polarization angles

Fig. S6 Polar plot of the power of the 520 nm laser with different polarization angles.

S7. Polarization-dependent photocurrents at different bias

Fig. S7 Polar plot of polarization-dependent photocurrent of Bi₂O₂Te photodetector at different bias.