Improved Capacitive Energy Storage Performance in Hybrid Films with Ultralow Aminated Molybdenum Trioxide Integration

for High-Temperature Applications

Tan Zeng,^a Qiao Li,^a Dongduan Liu,^a Jing Fu,^b Lipeng Zhong,^a Jinliang He,^b Qi Li,^b Chao Yuan, *^a ^a College of Electrical and Information Engineering, Hunan University, Changsha, Hunan 410082, China ^b State Key Laboratory of Power System, Department of Electrical Engineering,

Tsinghua University, Beijing 100084, China

Author to whom correspondence should be addressed: chaoyyy@outlook.com

Fig. S1 FTIR spectra of animated MoO3 nanoparticles

Fig. S2 (a) XPS general spectra of pristine PEI. (b) High-resolution N_{1s} of pristine PEI.

Fig. S3 (a) XPS general spectra of PEI/A-MoO₃ Hybrid film. High-resolution (b) N_{1s} and (c) Mo_{3d} of PEI/A-MoO₃ Hybrid film.

Fig. S4 DSC curves of (a) PEI/MoO₃ nanocomposites and (b) PEI/A-MoO₃ Hybrid film.

Fig. S5 (a) Stress-strain curves and (b) Yoing's modulus of pristine PEI and PEI/A-MoO₃ hybrid film.

Fig. S6 (a) Stress-strain curves and (b) Yoing's modulus of pristine PEI and PEI/MoO₃ nanocomposites.

Fig. S7 Surface TEM image of pristine PEI, PEI/MoO_3 and $PEI/A-MoO_3$.

Fig. S8 Current density of (a) PEI/A-MoO₃ and (b) PEI/MoO₃ films as a function of the electric field at 200 $^{\circ}$ C, and the solid curves represents the fit of the hopping conduction model.

Fig. S9 Frequency dependence of dielectric constant and dissipation factor of PEI/A- MoO_3 hybrid films at (a) 150 °C and (a) 200 °C.

Fig. S10 Frequency dependence of dielectric constant and dissipation factor of PEI/MoO₃ films at (a) 150 $^{\circ}$ C and (a) 200 $^{\circ}$ C.

Fig. S11 Temperature dependence of dielectric constant and dissipation factor of pristine PEI, PEI/0.3wt%A-MoO₃ and PEI/0.3wt%MoO₃.

Fig. S12 Weibull statics of breakdown strength of (a) PEI/A-MoO₃ and (b) PEI/MoO₃ films at 150 $^{\circ}$ C

Fig. S13 Weibull statics of breakdown strength of (a) PEI/A-MoO₃ and (b) PEI/MoO₃ films at 200 $^{\circ}$ C

Fig. S14 Electric field of (a) PEI/MoO₃ and (b) PEI/A-MoO₃ nanocomposites versus weight fraction at 150 $^\circ\!C$ and 200 $^\circ\!C$

Fig. S15 Schematic *D*-*E* loop of the dielectric material.

Fig. S16 Electric displacement-electric filed loop (*D-E* loop) of (a) PEI/0.3wt%A-MoO₃ and (b) PEI/0.3wt%MoO₃ at 200 °C and 100 Hz.

Fig. S17 Discharged energy density and efficiency of (a) PEI/A-MoO₃ and (b) PEI/MoO₃ at 150 $^{\circ}$ C and 100 Hz.

Fig. S18 Discharged energy density and efficiency of (a) PEI/A-MoO₃ and (b) PEI/MoO₃ at 200 $^{\circ}$ C and 100 Hz.

Fig. S19 Photograph of the PEI/A-MoO₃ hybrid film of 20×20 cm² area