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Computational methods

General details

Density functional theory (DFT) calculations were performed using the Vienna ab initio simulation
package (VASP). '™ The projector-augmented wave (PAW) method > was used, and the generalized gradient
approximation (GGA) following the formalism of Perdew, Burke, and Ernzerhof (PBE) " was employed. The
energy cutoff was set to 340 eV in all calculations. An on-site Hubbard-U correction* was applied following
the methodologies of Refs. 8 and 9, where U = 5 eV was applied to Cu-d and Ag-d orbitals, and U = 3
eV was applied to Au-d orbitals. All structures were relaxed using an automatically-generated k-point mesh
with a length factor of 20 A. The electronic structures were subsequently calculated on the relaxed structures
using a I'-centered mesh, where the equation Nypis ~ 8000/Natoms Was used to determine the number of
k-points sampled in a cell containing Natoms atoms. Spin-orbit coupling (SOC) effects were included in all
electronic structure calculations. The SOC strength in DF'T calculations was modified using the methodology

described in Ref. 10. Fermi surfaces were generated from DFT outputs using the iFermi software.

The M, parameter

The My value, as described by Eq. (1) in the main text, was calculated from the electronic structure.
The magnitude of My was determined from the energies of the highest occupied and lowest unoccupied
states at the I'-point. Given that all compounds considered in the study are crystal inversion-symmetric,
we evaluated the Z5 invariant from the parity eigenvalues of occupied bands at the time-reversal invariant
momenta (TRIM) using the method of Fu and Kane.'” Since we are considering 3D materials, there are
four Zy invariants, denoted (vg;v119v3). The sign of My is determined from the first Z5 invariant, vg. If
vy = 0, then the material is either a normal insulator or a weak TI, the latter of which is analogous to a
normal insulator in the presence of disorder. Accordingly, if vy = 0, then we set My > 0. If yp = 1 on
the other hand, and the wave function symmetries are indeed inverted at the I'-point, then the compound
is a strong TI, and we set My < 0. The wave function symmetries to calculate the parity eigenvalues were
determined using the irvsp software. ~ The calculated topological characters of compounds considered both

in the present study and in the study by Zhang et al.'" are in agreement.

Transport calculations

Detailed transport calculations based on Boltzmann theory were performed using the Ab initio Scattering

and Transport (AMSET) software.'” Material parameters required for the DFT transport calculations,



namely the elastic and dielectric tensors, were calculated using the finite difference method and density
functional perturbation theory, respectively. The transport properties were obtained by averaging over the
three Cartesian directions.

For BisTe; and BisSes in particular, we used experimental values for the band gap and lattice ther-
mal conductivity " to obtain good agreement with experimentally-measured transport properties. Van der
Waals interactions were not included. The calculated properties of BiyTes agree well with experimental mea-
surements (Figure S1). The magnitude of the band inversion strength at the I'-point, |My|, was evaluated
according to the necessary shift in the band gap. For the ZrBeSi-type ABX compounds, we used the band
gap calculated using PBE with SOC. The lattice thermal conductivity at 300 K was estimated following
the methodology outlined in Refs. and 18. Inputs to the estimation, such as the bulk modulus and
mass density, were calculated using DFT. Note that the ABX compounds can host a variety of electronic
structures, including insulators with a forbidden band gap and metals/semimetals with no gap.'" Since we
are interested in comparing the thermoelectric properties of insulators (normal and topological), we omit

any compounds with zero band gap from our analysis.

Effective masses and weighted mobility

The effective masses and weighted mobility were evaluated from the transport properties calculated using
the AMSET software at the band edges (i.e., valence band maximum and conduction band minimum). The
Seebeck effective mass m§ was evaluated from the Seebeck coefficient S and the carrier concentration n at

the band edge in the following way. The reduced Fermi level n was initially determined using the expression

oot ()

where F; is the Fermi-Dirac integral

(_:i
Fi(n) —/Hexp(g_n)d’f (S2)

We then determine mg using the expression
2mgkeT )/
n=tn (25500) 7 Rt (53)

Note that within a parabolic band assumption, the density of states effective mass mj, g is used in Eq. (S3)

in place of mg to calculate the carrier concentration. my,ogq characterizes the number of states available for



charge carriers and is thus a characteristic of the electronic structure of the material. One should interpret
the value for mg calculated in this way as the “effective” number of states involved in transport.

The conductivity effective mass m¢, was calculated from o and the scattering time, similar to the method-
ology employed in Ref. 20. From the conductivity tensor o;;, one can evaluate the conductivity mass tensor
mg, ;; using the form

1 1

MCij = a0 (S4)

where n is the carrier concentration and 7 is the scattering time. The key difference between the method-
ology used in Gibbs et al.”” and the present study lies in the evaluation of 7. As opposed to a constant
scattering time 7 = 79, an energy-dependent 7 = 7(F) is computed in this study using the AMSET software.

Accordingly, we calculate an average scattering time (7) to evaluate Eq. (S4), using the form

_ 2k T(Ex) Ex f (Bx)
S W -¥IY 5

where a summation over all k-points k is performed, and f(F) is the Fermi-Dirac distribution. From the

tensorial quantity Mg ;50 We compute a scalar quantity m¢ using a harmonic average:

—1
1 1 1
m& =3 < — +—t ) (S6)

*
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The weighted mobility u.,, was calculated using the effective masses and average scattering time:

;m=“ﬂ(mﬂw2 (57)

meg \ Me

The quality factor B is calculated using u,, and ky,:

2 3/2 5/2
B= (kB> 8me <2mekB) T (S8)
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Comparison to experiments for Bi,Tes
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Figure S1: Thermoelectric transport properties of n-type (a-c) and p-type (d-f) BiyTes, comparing between
DFT calculations (solid curves) and experimental measurements (black dots) at 300 K. The experimental

values are sourced from Ref.

and references therein. We compare the Seebeck coefficient .S, electrical con-

ductivity o, and thermal conductivity k. The thermal conductivity is the sum of the electronic contribution,
calculated using DFT, and the experimental lattice thermal conductivity at 300 K (k7 = 1.37 W/mK).



Quality factor B and Fermi surface complexity factor Ny, K*
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Figure S2: Maximum attainable 2T at 300 K, plotted against (a) the quality factor B and (b) the Fermi
surface complexity factor N{,K*. The color represents My, where normal insulators (M, > 0) are blue
and topological insulators (My < 0) are red. BiyTes; and BiySes are denoted by star and plus markers,

respectively; the rest are ABX compounds.



Transport model

General Boltzmann transport formalism for isotropic bands

Within the standard Boltzmann transport formalism under the relaxation time approximation,~ = the
electrical conductivity o, Seebeck coefficient S, and Lorenz number L for a single isotropic band can be

expressed as

S=— | (S9)

where Fg is the Fermi level and

1
FE) = —— (s10)
14+ exp ( kBTF>
is the Fermi-Dirac distribution. The transport function X(F) of a single band is given as
e? 9
£(B) = & o(B)9(E)r(E) (s11)

which is composed of the carrier velocity v(E), density of states g(E) (DOS), and scattering time 7(E). The
1/3 factor manifests from averaging over the three Cartesian directions.

Since topological insulators often possess narrow band gaps, thermoelectric transport can be influenced
by bipolar conduction effects from the presence of both majority and minority carriers. = We therefore employ
a two-band transport model to evaluate the thermoelectric performance, where the transport properties are

given as

O =0+ 0p

S — Shon — |Se|ae (Sl2)

g

OhO¢

ke = LpopT + Leo T + (Sh+ |S)> T

g

where the subscripts e and h correspond to electrons and holes, respectively. The subscripted transport

properties (e.g., o, and S.) are the single-band properties given in Eq. (S9). Note that Er must be



referenced to the conduction band for electrons and the valence band for holes. More details of the model

can be found in Ref.

Warped band transport model

We consider the conduction band within the warped band structure model given in Eq. (3) in the main

text, assuming symmetric bands (C = 0):

E(k) = /(Mo + M2k?)? + A2k?2 (S13)
The transport function X(E) can be expressed as a sum,

S(E) = So(E) + %1 (E)

62 62 (814)

= Sv0(BPg0(E)ro(E) + Sur(E) g1 (E)ri(E)

where the subscripts O and I denote the outer and inner Fermi spheres, respectively, for a warped band.

The velocity is defined in terms of the slope of Eq. (S13) with respect to the wave vector

1dFE

V= ——
ok (S15)
=35 (2MoM; + A + 2M3k?)

It is useful to express the curvature of the conduction band at k = kg as a parameter (, where

 2MoM, + A

= S16
T (510
which can be used to re-express the band structure in Eq. (S13) as
(k) = /M + ¢[Molk? + Mkt (S17)
and the velocity in Eq. (S15) as
1k
v =75 (CIMo| + 2M3k?) (S18)



As a result, the squared velocity is

From Eq. (S17) we find that

1 k2
v? = N ((C|Mo))? + 4¢| Mo | M3 K* + 4M3E*) s19)
S19
1 k2
= e ((¢|Mo|)* + 4M5 (E* — M§))
—C|My| £ 1/ (C|Mo|)? + 4M2(E? — M2
1o MOl /(M) + 43 2) 520

BYVE

Note that the 4+ and — terms correspond to the outer and inner Fermi spheres, respectively, when the bands

are warped (Mo < My.). Accordingly, the v? terms in Eq. (S14) can be fully expressed in terms of the

energy E as
11
vo(B) =45 5
11
uBY =g

((CIMol)? + 403 (E? — Mg))

((CIMo|)? + 403 (B — Mg))

—CIMo| + /(1Mo ])? + 40 (B> — M)
2M2

(S21)
—CIMo| = /(1Mo ])? + 4MZ (B — M)
YVE

When E > | My, the inner Fermi sphere vanishes, which corresponds to v < 0 and an imaginary vy.

The DOS for the outer Fermi sphere can be derived from the number of states per volume in 3D

kS
such that
dno
go(E) = JE
K1 52
72 huo
where we have invoked v = %%. The DOS of the inner Fermi sphere, similarly, is
kK21
E)y=-1L_— S24
au(B) = Lo (524
Note that the total DOS is the sum of contributions from the inner and outer Fermi spheres,
91(E) = go(E) + g1(E) (525)



The scattering time 7(E) depends on the dominant mechanism under which charge carriers are scattered.
The scattering rate is proportional to the total DOS of the system in many cases, because the phase space into
which carriers can scatter scales proportionately with the DOS.“>"*" Accordingly, we model the scattering
time for both the inner (77) and outer (7o) Fermi spheres as being inversely proportional to the total DOS,

i.e.

71(E) = 70(E) = (S26)

Note that the relationship 7(E) o gr(FE)~! can also be derived assuming scattering by acoustic phonons.
Ultimately, the transport properties within the warped band transport model can be expressed using

Egs. (S9) — (S12), where the warped band transport function in Eq. (S14) takes place of 3(FE) in Eq. (S9).

Effective masses from the warped band transport model

The Seebeck effective mass m§ and conductivity mass m¢, within the warped band transport model are
evaluated in a manner similar to the DFT-calculated masses. Namely, mg is calculated using Egs. (SI)
— (S3), and m¢ is calculated using Eqgs. (S4) — (S6). The only distinction lies in the calculation of the
average scattering time (7). Instead of performing a summation over all k as in Eq. (S5), an integration is

performed:
J 7(Ex)Ex f(Ex)dk
| Bx f(Ex)dk

(r) = (527)

Multi-valleyed transport model

To model a multi-valleyed electronic structure induced by band inversion, we fit a parabolic band to the
band edge of the warped band structure model in Eq. (3) in the main text. We define a parabolic band

h2k?
E —

= omi (S28)

where the band effective mass m; is determined from the curvature at the edge of the warped band structure.
We use a shorthand notation for the composite variable 8 = (M, A, M>) to indicate which parameters within
the multi-valleyed transport model are dependent on features of the warped band structure model.

For Ny parabolic conduction bands (or, equivalently, valence bands), the transport properties arising

10



from Eq. (S9) follow the forms:

o() = &7 (2m6kBT)3/2 ( 3) Fyoy ()

r+3 ()

r+3F,, ;(n)] (529)
F

(ks lr+ 1 Fis(n) r+ 5 Frs() i
L<">—<e> r+ 8 Foa(n) <r+§F ;<n>>

where p,, is the weighted mobility given as

(S30)

The scattering time prefactor, 79(8), in Eq. (S30) arises from the assumption that the scattering time

7(F) in Eq. (S11) follows a power-law form

In order to have the results for the multi-valleyed transport model be comparable to those of the warped
band transport model, we determine the form of 7y such that Eq. (S31) matches the form of Eq. (S26) when
r = —1/2. The scattering parameter r is chosen according to the assumed scattering mechanism, where
r = —1/2 represents scattering that is proportional to the phase space (i.e. 1/7 ~ gr(F)).”" Accordingly,

we determine from Egs. (S26) and (S31) that

_Cpos ([ F 1z
o) = B (H’)

= Cpos

ey L (S32)

V2Ny (B) (mi(8))*? (ksT)'/?

where Cpog is the same as in Eq. (526). The weighted mobility in Eq. (S30) can then be re-expressed as

em?h’ 1

me/?(2kgT)1/2 M3 ()

tw(B) = Cpos (S33)

The assumed scattering mechanism implies that p,, is agnostic of the specific number of carrier pockets Ny
that emerge from band inversion-induced warping. Accordingly, at a constant Fermi level and temperature

(i.e. constant 7), the thermoelectric transport properties do not change with Ny . Note that the same

11



conclusion may not hold when a different scattering mechanism dominates thermoelectric transport.
The carrier concentration, however, depends on Ny in general. In this study, we consider materials

where warping leads to a valley degeneracy of 6, such as BiyTes. Accordingly, we define

6 if My < ]\407C
Ny (B) = (S34)

1 otherwise

It is convenient to express the band gap, E4(3), in terms of the band edge position. The band edge
relative to mid-gap, Ey(6), depends on whether the bands are warped or not. If the bands are not warped
(Mo > M) and are therefore single-valleyed, then Ej is determined at the k-point where band inversion

occurs (ko). Otherwise, F} is determined at a k-point away from ko, say kg(8), which can be expressed as

—2Mo My — A?
2 _ oMo
k() = T (535)
Correspondingly, we can express Fy(8) as
Ay -3 — (4 )2 £ My < M
-5~ — | 550 it Mo < My,
Ey(B) = Ma AmA (S36)
| M| otherwise
and the band gap
Eq(B8) =2E4(B) (S37)
for both cases. The effective mass m}(8) = h?/ (%Z?) can be expressed in terms of Ey(5):
h2Ey (8) i M
. i i —2az it Mo < Mo,
mi(8) = M (535)
21\}/}0?\3/1% otherwise

Model parameters

For the results of the model in Figures 5 and 6 in the main text, the lattice thermal conductivity was
set to kr, = 1 W/mK. We set the band structure parameters to C' = 0 eV A2 A=15eV A and My =20

eV A2, We set the coefficient for the scattering time Cpog = 1 x 1032 J~lm—3s.

12



2T within the parameter space of the band structure model
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Figure S3: Maximum attainable zT at 300 K (denoted “max. zT300k”) calculated using the warped band
transport model. The parameter space of the band structure model in Eq. (S13) is explored. In general,

regardless of the first- and second-order corrections to the band structure (A and My, respectively), the
maximum 27" is higher when the bands are more inverted (i.e., more negative My).

13



Transport properties from the warped band transport model

(a) Figure of merit
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Figure S4: Properties from the warped band transport model, namely (a) 27", (b) power factor, (c) electrical
conductivity, and (d) Seebeck coefficient, plotted as a function of Fermi level referenced to the band edge.
Three representative band structures are considered: non-inverted (My = 0.35 eV, blue), inverted and single-

valleyed (M

14

0.03 eV, yellow), and inverted but warped (Mo = -0.35 eV, red).



Transport properties from the multi-valleyed transport model

(a) Figure of merit
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Figure S5: Properties from the multi-valleyed transport model, namely (a) 2T, (b) power factor, (c) electrical
conductivity, and (d) Seebeck coefficient, plotted as a function of Fermi level referenced to the band edge.
Three representative band structures are considered: non-inverted (My = 0.35 eV, blue), inverted and single-
valleyed (My = -0.03 eV, yellow), and inverted but warped (My = -0.35 eV, red).
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Effects of spin-orbit coupling on the band structure of Bi,Se;

Figure S6: Calculated (a) band structure and (b) My by varying the spin-orbit coupling strength in Bi,Ses.
The spin-orbit strength is listed relative to the normal amount at 100%, varied from 70% (lightest shade) to

(b)
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Effects of strain on the band structure of Bi,Te;

(@)

Figure S7: Calculated (a) band structure and (b) My by hydrostatically straining Bi,Tes. The strain is
listed relative to the DFT-relaxed lattice parameters, varied from 2% (tensile strain, lightest shade) to -4%
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(compressive strain, darkest shade). The corresponding M, is calculated at the I'-point.

16



References

(1)

(2)

Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non-Cryst. Solids 1995, 192, 222.

Kresse, G.; Furthmiiller, J. Efficiency of ab-initio total energy calculations for metals and semiconduc-

tors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15.

Kresse, G.; Furthmiiller, J. Efficient iterative schemes for ab initio total-energy calculations using a

plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method.

Phys. Rev. B 1999, 59, 1758.

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Reuv.
Lett. 1996, 77, 3865.

Dudarev, S.; Botton, G.; Savrasov, S.; Humphreys, C.; Sutton, A. Electron-energy-loss spectra and the
structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B 1998, 57, 1505.

Stevanovié, V.; Lany, S.; Zhang, X.; Zunger, A. Correcting density functional theory for accurate
predictions of compound enthalpies of formation: Fitted elemental-phase reference energies. Phys. Rev.

B 2012, 85, 115104.

Gorai, P.; Toberer, E. S.; Stevanovi¢, V. Thermoelectricity in transition metal compounds: the role of

spin disorder. Phys. Chem. Chem. Phys. 2016, 18, 31777.

Toriyama, M. Y.; Snyder, G. J. Band inversion-driven warping and high valley degeneracy. Cell Rep.
Phys. Sci. 2023, 4, 101392.

Ganose, A. M.; Searle, A.; Jain, A.; Griffin, S. M. [Fermi: A python library for Fermi surface generation

and analysis. J. Open Source Softw. 2021, 6, 3089.

Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302.

Gao, J.; Wu, Q.; Persson, C.; Wang, Z. Irvsp: to obtain irreducible representations of electronic states

in the VASP. Comput. Phys. Commun. 2021, 261, 107760.

17



Zhang, X.; Liu, Q.; Xu, Q.; Dai, X.; Zunger, A. Topological insulators versus topological Dirac semimet-

als in honeycomb compounds. J. Am. Chem. Soc. 2018, 140, 13687.

Ganose, A. M.; Park, J.; Faghaninia, A.; Woods-Robinson, R.; Persson, K. A.; Jain, A. Efficient

calculation of carrier scattering rates from first principles. Nat. Commun. 2021, 12, 1.

Witting, I. T.; Chasapis, T. C.; Ricci, F.; Peters, M.; Heinz, N. A.; Hautier, G.; Snyder, G. J. The

thermoelectric properties of bismuth telluride. Adv. FElectron. Mater. 2019, 5, 1800904.

Yan, J.; Gorai, P.; Ortiz, B.; Miller, S.; Barnett, S. A.; Mason, T.; Stevanovi¢, V.; Toberer, E. S.

Material descriptors for predicting thermoelectric performance. Energ. Environ. Sci. 2015, 8, 983.

Miller, S. A.; Gorai, P.; Ortiz, B. R.; Goyal, A.; Gao, D.; Barnett, S. A.; Mason, T. O.; Snyder, G. J.;
Lv, Q.; Stevanovi¢, V.; Toberer, E. S. Capturing anharmonicity in a lattice thermal conductivity model

for high-throughput predictions. Chem. Mater. 2017, 29, 2494.

Snyder, G. J.; Pereyra, A.; Gurunathan, R. Effective mass from seebeck coefficient. Adv. Funct. Mater.

2022, 32, 2112772.

Gibbs, Z. M.; Ricci, F.; Li, G.; Zhu, H.; Persson, K.; Ceder, G.; Hautier, G.; Jain, A.; Snyder, G. J.
Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj

Comput. Mater. 2017, 3, 8.

Lundstrom, M. Fundamentals of carrier transport. 2002.

Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Cengage Learning, 1976; Vol. 3.

Askerov, B. M. FElectron transport phenomena in semiconductors; World scientific, 1994.

Toriyama, M. Y.; Carranco, A. N.; Snyder, G. J.; Gorai, P. Material descriptors for thermoelectric

performance of narrow-gap semiconductors and semimetals. Mater. Horiz. 2023, 10, 4256.

Witkoske, E.; Wang, X.; Lundstrom, M.; Askarpour, V.; Maassen, J. Thermoelectric band engineering:

The role of carrier scattering. J. Appl. Phys. 2017, 122, 175102.

Rudderham, C.; Maassen, J. Analysis of simple scattering models on the thermoelectric performance

of analytical electron dispersions. J. Appl. Phys. 2020, 127, 065105.

Askarpour, V.; Maassen, J. First-principles analysis of intravalley and intervalley electron-phonon scat-

tering in thermoelectric materials. Phys. Rev. B 2023, 107, 045203.

18



