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Computational methods

General details

Density functional theory (DFT) calculations were performed using the Vienna ab initio simulation

package (VASP).1–3 The projector-augmented wave (PAW) method4,5 was used, and the generalized gradient

approximation (GGA) following the formalism of Perdew, Burke, and Ernzerhof (PBE)6 was employed. The

energy cutoff was set to 340 eV in all calculations. An on-site Hubbard-U correction7 was applied following

the methodologies of Refs. 8 and 9, where U = 5 eV was applied to Cu-d and Ag-d orbitals, and U = 3

eV was applied to Au-d orbitals. All structures were relaxed using an automatically-generated k-point mesh

with a length factor of 20 Å. The electronic structures were subsequently calculated on the relaxed structures

using a Γ-centered mesh, where the equation Nkpts ≈ 8000/Natoms was used to determine the number of

k-points sampled in a cell containing Natoms atoms. Spin-orbit coupling (SOC) effects were included in all

electronic structure calculations. The SOC strength in DFT calculations was modified using the methodology

described in Ref. 10. Fermi surfaces were generated from DFT outputs using the iFermi software.11

The M0 parameter

The M0 value, as described by Eq. (1) in the main text, was calculated from the electronic structure.

The magnitude of M0 was determined from the energies of the highest occupied and lowest unoccupied

states at the Γ-point. Given that all compounds considered in the study are crystal inversion-symmetric,

we evaluated the Z2 invariant from the parity eigenvalues of occupied bands at the time-reversal invariant

momenta (TRIM) using the method of Fu and Kane.12 Since we are considering 3D materials, there are

four Z2 invariants, denoted (ν0; ν1ν2ν3). The sign of M0 is determined from the first Z2 invariant, ν0. If

ν0 = 0, then the material is either a normal insulator or a weak TI, the latter of which is analogous to a

normal insulator in the presence of disorder. Accordingly, if ν0 = 0, then we set M0 > 0. If ν0 = 1 on

the other hand, and the wave function symmetries are indeed inverted at the Γ-point, then the compound

is a strong TI, and we set M0 < 0. The wave function symmetries to calculate the parity eigenvalues were

determined using the irvsp software.13 The calculated topological characters of compounds considered both

in the present study and in the study by Zhang et al.14 are in agreement.

Transport calculations

Detailed transport calculations based on Boltzmann theory were performed using the Ab initio Scattering

and Transport (AMSET) software.15 Material parameters required for the DFT transport calculations,
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namely the elastic and dielectric tensors, were calculated using the finite difference method and density

functional perturbation theory, respectively. The transport properties were obtained by averaging over the

three Cartesian directions.

For Bi2Te3 and Bi2Se3 in particular, we used experimental values for the band gap and lattice ther-

mal conductivity16 to obtain good agreement with experimentally-measured transport properties. Van der

Waals interactions were not included. The calculated properties of Bi2Te3 agree well with experimental mea-

surements (Figure S1). The magnitude of the band inversion strength at the Γ-point, |M0|, was evaluated

according to the necessary shift in the band gap. For the ZrBeSi-type ABX compounds, we used the band

gap calculated using PBE with SOC. The lattice thermal conductivity at 300 K was estimated following

the methodology outlined in Refs. 17 and 18. Inputs to the estimation, such as the bulk modulus and

mass density, were calculated using DFT. Note that the ABX compounds can host a variety of electronic

structures, including insulators with a forbidden band gap and metals/semimetals with no gap.14 Since we

are interested in comparing the thermoelectric properties of insulators (normal and topological), we omit

any compounds with zero band gap from our analysis.

Effective masses and weighted mobility

The effective masses and weighted mobility were evaluated from the transport properties calculated using

the AMSET software at the band edges (i.e., valence band maximum and conduction band minimum). The

Seebeck effective mass m∗
S was evaluated from the Seebeck coefficient S and the carrier concentration n at

the band edge in the following way. The reduced Fermi level η was initially determined using the expression

S =
kB
e

(
−η +

2F1(η)

F0(η)

)
(S1)

where Fi is the Fermi-Dirac integral

Fi(η) =

∫
εi

1 + exp(ε− η)
dε (S2)

We then determine m∗
S using the expression

n = 4π

(
2m∗

SkBT

h2

)3/2

F1/2(η) (S3)

Note that within a parabolic band assumption, the density of states effective mass m∗
DOS is used in Eq. (S3)

in place of m∗
S to calculate the carrier concentration. m∗

DOS characterizes the number of states available for
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charge carriers and is thus a characteristic of the electronic structure of the material. One should interpret

the value for m∗
S calculated in this way as the “effective” number of states involved in transport.19

The conductivity effective massm∗
C was calculated from σ and the scattering time, similar to the method-

ology employed in Ref. 20. From the conductivity tensor σij , one can evaluate the conductivity mass tensor

m∗
C,ij using the form

m∗
C,ij

−1 =
1

e2τn
σij (S4)

where n is the carrier concentration and τ is the scattering time. The key difference between the method-

ology used in Gibbs et al.20 and the present study lies in the evaluation of τ . As opposed to a constant

scattering time τ = τ0, an energy-dependent τ = τ(E) is computed in this study using the AMSET software.

Accordingly, we calculate an average scattering time ⟨τ⟩ to evaluate Eq. (S4), using the form21

⟨τ⟩ =
∑

k τ(Ek)Ekf(Ek)∑
k Ekf(Ek)

(S5)

where a summation over all k-points k is performed, and f(E) is the Fermi-Dirac distribution. From the

tensorial quantity m∗
C,ij , we compute a scalar quantity m∗

C using a harmonic average:

m∗
C = 3

(
1

m∗
C,x

+
1

m∗
C,y

+
1

m∗
C,z

)−1

(S6)

The weighted mobility µw was calculated using the effective masses and average scattering time:

µw =
e⟨τ⟩
m∗

C

(
m∗

S

me

)3/2

(S7)

The quality factor B is calculated using µw and κL:

B =

(
kB
e

)2
8πe

3

(
2mekB
h2

)3/2
µwT

5/2

κL
(S8)
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Comparison to experiments for Bi2Te3

(a) (b) (c)

(d) (e) (f)

n-type

p-type

Figure S1: Thermoelectric transport properties of n-type (a-c) and p-type (d-f) Bi2Te3, comparing between
DFT calculations (solid curves) and experimental measurements (black dots) at 300 K. The experimental
values are sourced from Ref. 16 and references therein. We compare the Seebeck coefficient S, electrical con-
ductivity σ, and thermal conductivity κ. The thermal conductivity is the sum of the electronic contribution,
calculated using DFT, and the experimental lattice thermal conductivity at 300 K (κL = 1.37 W/mK).16
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Quality factor B and Fermi surface complexity factor N ∗
VK

∗

(b)

Bi2Te3

Bi2Se3

(a)

Figure S2: Maximum attainable zT at 300 K, plotted against (a) the quality factor B and (b) the Fermi
surface complexity factor N∗

V K
∗. The color represents M0, where normal insulators (M0 > 0) are blue

and topological insulators (M0 < 0) are red. Bi2Te3 and Bi2Se3 are denoted by star and plus markers,
respectively; the rest are ABX compounds.
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Transport model

General Boltzmann transport formalism for isotropic bands

Within the standard Boltzmann transport formalism under the relaxation time approximation,21–23 the

electrical conductivity σ, Seebeck coefficient S, and Lorenz number L for a single isotropic band can be

expressed as

σ =

∫
Σ(E)

(
− ∂f

∂E

)
dE

S =
kB
e

∫
Σ(E)

(
E−EF

kBT

)(
− ∂f

∂E

)
dE

σ

L =

(
kB
e

)2
∫
Σ(E)

(
E−EF

kBT

)2 (
− ∂f

∂E

)
dE

σ
− S2

(S9)

where EF is the Fermi level and

f(E) =
1

1 + exp
(

E−EF

kBT

) (S10)

is the Fermi-Dirac distribution. The transport function Σ(E) of a single band is given as

Σ(E) =
e2

3
v(E)2g(E)τ(E) (S11)

which is composed of the carrier velocity v(E), density of states g(E) (DOS), and scattering time τ(E). The

1/3 factor manifests from averaging over the three Cartesian directions.

Since topological insulators often possess narrow band gaps, thermoelectric transport can be influenced

by bipolar conduction effects from the presence of both majority and minority carriers.24 We therefore employ

a two-band transport model to evaluate the thermoelectric performance, where the transport properties are

given as

σ = σe + σh

S =
Shσh − |Se|σe

σ

κe = LhσhT + LeσeT +
σhσe

σ
(Sh + |Se|)2 T

(S12)

where the subscripts e and h correspond to electrons and holes, respectively. The subscripted transport

properties (e.g., σe and Se) are the single-band properties given in Eq. (S9). Note that EF must be
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referenced to the conduction band for electrons and the valence band for holes. More details of the model

can be found in Ref. 24.

Warped band transport model

We consider the conduction band within the warped band structure model given in Eq. (3) in the main

text, assuming symmetric bands (C = 0):

E(k) =
√
(M0 +M2k2)2 +A2k2 (S13)

The transport function Σ(E) can be expressed as a sum,

Σ(E) = ΣO(E) + ΣI(E)

=
e2

3
vO(E)2gO(E)τO(E) +

e2

3
vI(E)2gI(E)τI(E)

(S14)

where the subscripts O and I denote the outer and inner Fermi spheres, respectively, for a warped band.

The velocity is defined in terms of the slope of Eq. (S13) with respect to the wave vector

v =
1

ℏ
dE

dk

=
1

ℏ
k

E

(
2M0M2 +A2 + 2M2

2 k
2
) (S15)

It is useful to express the curvature of the conduction band at k = k0 as a parameter ζ, where

ζ =
2M0M2 +A2

|M0|
(S16)

which can be used to re-express the band structure in Eq. (S13) as

E(k) =
√
M2

0 + ζ|M0|k2 +M2
2 k

4 (S17)

and the velocity in Eq. (S15) as

v =
1

ℏ
k

E

(
ζ|M0|+ 2M2

2 k
2
)

(S18)

8



As a result, the squared velocity is

v2 =
1

ℏ2
k2

E2

(
(ζ|M0|)2 + 4ζ|M0|M2

2 k
2 + 4M4

2 k
4
)

=
1

ℏ2
k2

E2

(
(ζ|M0|)2 + 4M2

2

(
E2 −M2

0

)) (S19)

From Eq. (S17) we find that

k2 =
−ζ|M0| ±

√
(ζ|M0|)2 + 4M2

2 (E
2 −M2

0 )

2M2
2

(S20)

Note that the + and − terms correspond to the outer and inner Fermi spheres, respectively, when the bands

are warped (M0 < M0,c). Accordingly, the v2 terms in Eq. (S14) can be fully expressed in terms of the

energy E as

vO(E)2 =
1

ℏ2
1

E2

(
(ζ|M0|)2 + 4M2

2

(
E2 −M2

0

)) −ζ|M0|+
√
(ζ|M0|)2 + 4M2

2 (E
2 −M2

0 )

2M2
2

vI(E)2 =
1

ℏ2
1

E2

(
(ζ|M0|)2 + 4M2

2

(
E2 −M2

0

)) −ζ|M0| −
√
(ζ|M0|)2 + 4M2

2 (E
2 −M2

0 )

2M2
2

(S21)

When E > |M0|, the inner Fermi sphere vanishes, which corresponds to v2I < 0 and an imaginary vI .

The DOS for the outer Fermi sphere can be derived from the number of states per volume in 3D

nO =
k3O
3π2

(S22)

such that

gO(E) =
dnO

dE

=
k2O
π2

1

ℏvO

(S23)

where we have invoked v = 1
ℏ
dE
dk . The DOS of the inner Fermi sphere, similarly, is

gI(E) =
k2I
π2

1

ℏvI
(S24)

Note that the total DOS is the sum of contributions from the inner and outer Fermi spheres,

gT (E) = gO(E) + gI(E) (S25)
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The scattering time τ(E) depends on the dominant mechanism under which charge carriers are scattered.

The scattering rate is proportional to the total DOS of the system in many cases, because the phase space into

which carriers can scatter scales proportionately with the DOS.25–27 Accordingly, we model the scattering

time for both the inner (τI) and outer (τO) Fermi spheres as being inversely proportional to the total DOS,

i.e.

τI(E) = τO(E) =
CDOS

gT (E)
(S26)

Note that the relationship τ(E) ∝ gT (E)−1 can also be derived assuming scattering by acoustic phonons.23

Ultimately, the transport properties within the warped band transport model can be expressed using

Eqs. (S9) – (S12), where the warped band transport function in Eq. (S14) takes place of Σ(E) in Eq. (S9).

Effective masses from the warped band transport model

The Seebeck effective mass m∗
S and conductivity mass m∗

C within the warped band transport model are

evaluated in a manner similar to the DFT-calculated masses. Namely, m∗
S is calculated using Eqs. (S1)

– (S3), and m∗
C is calculated using Eqs. (S4) – (S6). The only distinction lies in the calculation of the

average scattering time ⟨τ⟩. Instead of performing a summation over all k as in Eq. (S5), an integration is

performed:

⟨τ⟩ =
∫
τ(Ek)Ekf(Ek)dk∫

Ekf(Ek)dk
(S27)

Multi-valleyed transport model

To model a multi-valleyed electronic structure induced by band inversion, we fit a parabolic band to the

band edge of the warped band structure model in Eq. (3) in the main text. We define a parabolic band

E =
ℏ2k2

2m∗
b(β)

(S28)

where the band effective mass m∗
b is determined from the curvature at the edge of the warped band structure.

We use a shorthand notation for the composite variable β ≡ (M0, A,M2) to indicate which parameters within

the multi-valleyed transport model are dependent on features of the warped band structure model.

For NV parabolic conduction bands (or, equivalently, valence bands), the transport properties arising
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from Eq. (S9) follow the forms:

σ(η) =
8πe

3

(
2mekBT

h2

)3/2

µw(β)

(
r +

3

2

)
Fr+ 1

2
(η)

S(η) =
kB
e

[
−η +

r + 5
2

r + 3
2

Fr+ 3
2
(η)

Fr+ 1
2
(η)

]

L(η) =

(
kB
e

)2
r + 7

2

r + 3
2

Fr+ 5
2
(η)

Fr+ 1
2
(η)

−

(
r + 5

2

r + 3
2

Fr+ 3
2
(η)

Fr+ 1
2
(η)

)2


(S29)

where µw is the weighted mobility given as

µw(β) = µ0(β)

(
m∗

DOS(β)

me

)3/2

=
eτ0(β)

m∗
b(β)

NV

(
m∗

b(β)

me

)3/2
(S30)

The scattering time prefactor, τ0(β), in Eq. (S30) arises from the assumption that the scattering time

τ(E) in Eq. (S11) follows a power-law form

τ = τ0

(
E

kBT

)r

(S31)

In order to have the results for the multi-valleyed transport model be comparable to those of the warped

band transport model, we determine the form of τ0 such that Eq. (S31) matches the form of Eq. (S26) when

r = −1/2. The scattering parameter r is chosen according to the assumed scattering mechanism, where

r = −1/2 represents scattering that is proportional to the phase space (i.e. 1/τ ∼ gT (E)).27 Accordingly,

we determine from Eqs. (S26) and (S31) that

τ0(β) =
CDOS

gT (E)

(
E

kBT

)1/2

= CDOS
π2ℏ3

√
2NV (β) (m∗

b(β))
3/2

1

(kBT )1/2

(S32)

where CDOS is the same as in Eq. (S26). The weighted mobility in Eq. (S30) can then be re-expressed as

µw(β) = CDOS
eπ2ℏ3

m
3/2
e (2kBT )1/2

1

m∗
b(β)

(S33)

The assumed scattering mechanism implies that µw is agnostic of the specific number of carrier pockets NV

that emerge from band inversion-induced warping. Accordingly, at a constant Fermi level and temperature

(i.e. constant η), the thermoelectric transport properties do not change with NV . Note that the same
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conclusion may not hold when a different scattering mechanism dominates thermoelectric transport.

The carrier concentration, however, depends on NV in general. In this study, we consider materials

where warping leads to a valley degeneracy of 6, such as Bi2Te3. Accordingly, we define

NV (β) =


6 if M0 < M0,c

1 otherwise

(S34)

It is convenient to express the band gap, Eg(β), in terms of the band edge position. The band edge

relative to mid-gap, Eb(β), depends on whether the bands are warped or not. If the bands are not warped

(M0 ≥ M0,c) and are therefore single-valleyed, then Eb is determined at the k-point where band inversion

occurs (k0). Otherwise, Eb is determined at a k-point away from k0, say kB(β), which can be expressed as

kB(β)
2 =

−2M0M2 −A2

2M2
2

(S35)

Correspondingly, we can express Eb(β) as

Eb(β) =


A

√
−M0

M2
−
(

A
2M2

)2
if M0 < M0,c

|M0| otherwise

(S36)

and the band gap

Eg(β) = 2Eb(β) (S37)

for both cases. The effective mass m∗
b(β) = ℏ2/

(
∂2E
∂k2

)
can be expressed in terms of Eb(β):

m∗
b(β) =


ℏ2Eb(β)

−4M0M2−2A2 if M0 < M0,c

ℏ2Eb(β)
2M0M2+A2 otherwise

(S38)

Model parameters

For the results of the model in Figures 5 and 6 in the main text, the lattice thermal conductivity was

set to κL = 1 W/mK. We set the band structure parameters to C = 0 eV Å2, A = 1.5 eV Å , and M2 = 20

eV Å2. We set the coefficient for the scattering time CDOS = 1× 1032 J−1m−3s.
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zT within the parameter space of the band structure model

M
2  (eV Å 2)

10
20

30
40

A (eV Å)1 2 3 4

M
0 (

eV
)

0.6

0.4

0.2

0.0

0.2

0.0 0.5 1.0 1.5
max. zT300K

Figure S3: Maximum attainable zT at 300 K (denoted “max. zT300K”) calculated using the warped band
transport model. The parameter space of the band structure model in Eq. (S13) is explored. In general,
regardless of the first- and second-order corrections to the band structure (A and M2, respectively), the
maximum zT is higher when the bands are more inverted (i.e., more negative M0).
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Transport properties from the warped band transport model

(c) Electrical conductivity (d) Seebeck coefficient

(b) Power factor(a) Figure of merit

Figure S4: Properties from the warped band transport model, namely (a) zT , (b) power factor, (c) electrical
conductivity, and (d) Seebeck coefficient, plotted as a function of Fermi level referenced to the band edge.
Three representative band structures are considered: non-inverted (M0 = 0.35 eV, blue), inverted and single-
valleyed (M0 = -0.03 eV, yellow), and inverted but warped (M0 = -0.35 eV, red).
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Transport properties from the multi-valleyed transport model

(c) Electrical conductivity (d) Seebeck coefficient

(b) Power factor(a) Figure of merit

Figure S5: Properties from the multi-valleyed transport model, namely (a) zT , (b) power factor, (c) electrical
conductivity, and (d) Seebeck coefficient, plotted as a function of Fermi level referenced to the band edge.
Three representative band structures are considered: non-inverted (M0 = 0.35 eV, blue), inverted and single-
valleyed (M0 = -0.03 eV, yellow), and inverted but warped (M0 = -0.35 eV, red).
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Effects of spin-orbit coupling on the band structure of Bi2Se3

Non-inverted

Inverted

140%

(a) (b)

Figure S6: Calculated (a) band structure and (b) M0 by varying the spin-orbit coupling strength in Bi2Se3.
The spin-orbit strength is listed relative to the normal amount at 100%, varied from 70% (lightest shade) to
140% (darkest shade). The corresponding M0 is calculated at the Γ-point.

Effects of strain on the band structure of Bi2Te3

-4%

(a) (b)

Figure S7: Calculated (a) band structure and (b) M0 by hydrostatically straining Bi2Te3. The strain is
listed relative to the DFT-relaxed lattice parameters, varied from 2% (tensile strain, lightest shade) to -4%
(compressive strain, darkest shade). The corresponding M0 is calculated at the Γ-point.
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