## Atomic-Scale Ru Anchored on Chromium-Shavings as Precursor for pH-

## Universal Hydrogen Evolution Reaction Electrocatalyst

Qingxin Han<sup>a#\*</sup>, Qiangqiang Lu<sup>a#</sup>, Xuechuan Wang<sup>a,b</sup>, Chao Wei<sup>a</sup>, Xiaoyu Guan<sup>a\*</sup>, Luming Chen<sup>a</sup>,

Xiao Wang<sup>a</sup>, &Ji Li<sup>a\*</sup>

<sup>a</sup> College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China

<sup>b</sup> Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of

Education & Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and

Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China

<sup>#</sup>These authors contributed to the work equally and should be regarded as co-first authors.

\*E-mail: <u>hanqingxin@sust.edu.cn</u>

\*E-mail: <u>xiaoyu.guan@a.riken.jp</u>

\*E-mail: <u>liji@sust.edu.cn</u>



Fig. S1. FT-IR spectra of chrome shavings and chrome shavings were loaded with RuCl<sub>3</sub>.



Fig. S2. SEM image and corresponding EDX elemental mapping of C, Ru, O, Cr and N.



**Fig. S3.** (a-c) SEM image of CN/Ru-1; (d-f) SEM of CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-0.1; (g-i) SEM of CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-0.1; (j-i) SEM of CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-10.











Fig. S7. (a) The change of Cr (VI) content is in Cr 2p; (b) Comparison of LCV curves with different Cr (VI) contents.



Fig. S8. The changes of Cr 2p (a) and Ru 3d (b) orbitals of CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-1 and CN/Ru-1, CN/Cr<sub>2</sub>O<sub>3</sub>.



Fig. S9. (a) LSV polarization curves of  $CN/Cr_2O_3/Ru-0$ ,  $CN/Cr_2O_3/Ru-0.1$ ,  $CN/Cr_2O_3/Ru-0.5$ ,  $CN/Cr_2O_3/Ru-1$ ,  $CN/Cr_2O_3/Ru-5$ ,  $CN/Cr_2O_3/Ru-10$  and 20% Pt/C catalysts in 1.0 M H<sub>2</sub>SO<sub>4</sub>; (b) LSV polarization curves of  $CN/Cr_2O_3/Ru-0.5$ ,  $CN/Cr_2O_3/Ru-1$  and 20% Pt/C catalysts in Hg/Hg<sub>2</sub>SO<sub>4</sub> electrode.



**Fig. S10.** (a) LSV polarization curves of  $CN/Cr_2O_3/Ru-0$ ,  $CN/Cr_2O_3/Ru-0.1$ ,  $CN/Cr_2O_3/Ru-0.5$ ,  $CN/Cr_2O_3/Ru-1$ ,  $CN/Cr_2O_3/Ru-5$ ,  $CN/Cr_2O_3/Ru-10$  and 20% Pt/C catalysts in 1.0 M KOH; (b) LSV polarization curves of  $CN/Cr_2O_3/Ru-0.5$ ,  $CN/Cr_2O_3/Ru-1$  and 20% Pt/C catalysts in Hg/HgO electrode; (c) Real test scenarios.



**Fig. S11.** Nyquist plots of CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-0, CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-0.1, CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-0.5, CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-1, CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-5 and CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-10 in (a) 1.0 M PBS, (b) 0.5 M H<sub>2</sub>SO<sub>4</sub> and (c) 1.0 M KOH.



**Fig. S12.** (a-f) CV curves obtained in a potential window of 0.092-0.192 V (*vs.* RHE) at different scan rates in 1.0 M KOH for  $CN/Cr_2O_3/Ru-0$ ,  $CN/Cr_2O_3/Ru-0.1$ ,  $CN/Cr_2O_3/Ru-0.5$ ,  $CN/Cr_2O_3/Ru-1$ ,  $CN/Cr_2O_3/Ru-5$  and  $CN/Cr_2O_3/Ru-10$ , respectively. (g) Charging current density plots with different scan rates for the samples.



**Fig. S13.** (a-f) CV curves obtained in a potential window of 0.092-0.192 V (*vs.* RHE) at different scan rates in 0.5 M  $H_2SO_4$  for CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-0, CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-0.1, CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-0.5, CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-1, CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-5 and CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-10, respectively. (g) Charging current density plots with different scan rates for the samples.



Fig. S14. (a-f) CV curves obtained in a potential window of 0.092-0.192 V (vs. RHE) at different scan rates in 1.0 M PBS for  $CN/Cr_2O_3/Ru-0$ ,  $CN/Cr_2O_3/Ru-0.1$ ,  $CN/Cr_2O_3/Ru-0.5$ ,  $CN/Cr_2O_3/Ru-1$ ,  $CN/Cr_2O_3/Ru-5$  and  $CN/Cr_2O_3/Ru-10$ , respectively. (g) Charging current density plots with different scan rates for the samples.



Fig. S15. HER stability (i-t curves) of  $CN/Cr_2O_3/Ru-1$  in (a) 0.5 M H<sub>2</sub>SO<sub>4</sub>, (b) 1.0 M PBS.



Fig. S16. the LSV curves before and after the durability test.



Fig. S17. (a) and (b) SEM images of CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-1 after the durability test in 1.0 M KOH.(c) and (d) SEM images of CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-1 after the durability test in 1.0 M KOH.



Fig. S18. XPS survey spectra of CN/Cr<sub>2</sub>O<sub>3</sub>/Ru-1 before and after stability test in 1.0 M KOH.



Fig. S19. Comparison of HER performance of three catalysts.



Fig. S20. Calculated PDOS of Cr<sub>2</sub>O<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub>/RuN<sub>4</sub>, RuN<sub>4</sub>.



**Fig. S21.** PDOS of Ru d band, Cr d band and O p band electrons. **Table S1.** Elemental contents (wt%) detected by XPS.

| Samples                                  | $S_{BET}(m^2 g^{-1})$ | Pore volumes (cm <sup>3</sup> g <sup>-1</sup> ) |
|------------------------------------------|-----------------------|-------------------------------------------------|
| CN/Cr <sub>2</sub> O <sub>3</sub> /Ru-0  | 332.5                 | 0.25                                            |
| CN/Cr <sub>2</sub> O <sub>3</sub> /Ru-1  | 843.8                 | 0.49                                            |
| CN/Cr <sub>2</sub> O <sub>3</sub> /Ru-10 | 518.8                 | 0.33                                            |

| Samples C N O Cr                                                | Ru   |
|-----------------------------------------------------------------|------|
| CN/Cr <sub>2</sub> O <sub>3</sub> /Ru-0 84.46 2.25 11.51 1.78   | 0    |
| CN/Cr <sub>2</sub> O <sub>3</sub> /Ru-0.1 77.33 2.41 16.49 3.27 | 0.5  |
| CN/Cr <sub>2</sub> O <sub>3</sub> /Ru-0.5 82.1 1.93 11.93 2.97  | 1.07 |
| CN/Cr <sub>2</sub> O <sub>3</sub> /Ru-1 78.64 2.04 13.69 2.9    | 2.74 |
| CN/Cr <sub>2</sub> O <sub>3</sub> /Ru-5 75.33 2.41 14.49 2.27   | 5.5  |
| CN/Cr <sub>2</sub> O <sub>3</sub> /Ru-10 75.96 1.95 10.99 2.15  | 8.95 |

Table S2. Elemental contents (wt%) detected by XPS.

**Table S3.** EXAFS fitting parameters at the Ru K-edge for various samples ( $S_0^2=0.78$ )

| Sample           | Shell  | $CN^a$        | $R(\text{\AA})^b$ | $\sigma^2(\text{\AA}^2)^c$ | $\Delta E_0(\mathrm{eV})^d$ | R factor |
|------------------|--------|---------------|-------------------|----------------------------|-----------------------------|----------|
| Ru foil          | Ru-Ru  | 12*           | $2.68{\pm}0.01$   | 0.0042                     | 3.8                         | 0.0072   |
|                  | Ru-O   | $6.0 \pm 0.4$ | $1.96{\pm}0.01$   | 0.0015                     | -3.9                        |          |
| RuO <sub>2</sub> | Ru-Ru  | $6.0 \pm 0.8$ | $3.12 \pm 0.01$   | 0.0072                     | -8.9                        | 0.0149   |
|                  | Ru-Ru  | 6.1±0.3       | $3.58{\pm}0.01$   | 0.0013                     | 2.2                         |          |
|                  | Ru-C/N | 4.0±0.4       | $2.02{\pm}0.01$   | 0.0029                     | -12.9                       |          |
| Ru sample        | Ru-Cl  | 1.8±0.2       | 2.41±0.01         | 0.0043                     | 11.7                        | 0.0196   |
|                  | Ru-Ru  | 1.0±0.2       | 2.63±0.01         | 0.0057                     | 14.7                        |          |

<sup>*a*</sup>*CN*, coordination number; <sup>*b*</sup>*R*, distance between absorber and backscatter atoms; <sup>*c*</sup> $\sigma^2$ , Debye-Waller factor to account for both thermal and structural disorders; <sup>*d*</sup> $\Delta E_0$ , inner potential correction; *R* factor indicates the goodness of the fit. S<sub>0</sub><sup>2</sup> was fixed to 0.78, according to the experimental EXAFS fit of Ru foil by fixing CN as the known crystallographic value.

| Medium                                            | Reference electrode                | Pt/C | $CN/Cr_2O_3/Ru-0.5$ | CN/Cr <sub>2</sub> O <sub>3</sub> /Ru-1 |
|---------------------------------------------------|------------------------------------|------|---------------------|-----------------------------------------|
| 1 0 M KOH                                         | Hg/Hg <sub>2</sub> Cl <sub>2</sub> | 12   | 47                  | 28                                      |
|                                                   | Hg/HgO                             | 11   | 40                  | 24                                      |
| 0.5 M H SO                                        | $Hg/Hg_2Cl_2$                      | 10   | 96                  | 58                                      |
| $0.3 \text{ M} \text{ H}_2 \text{ S} \text{ O}_4$ | $Hg/Hg_2SO_4$                      | 14   | 97                  | 47                                      |

Table S4. A comparison of overpotentials (mV) at 10 mA/cm<sup>2</sup>

**Table S5.** ICP-OES analysis of dissolved Ru and Cr ions after stability test in 1.0 M KOH.

| -                             |       |       |       |
|-------------------------------|-------|-------|-------|
| Sample amount                 | 2 mg  | 4 mg  | 5 mg  |
| Concentration of Ru ion (ppb) | 0.18  | 0.25  | 0.49  |
| Concentration of Cr ion (ppb) | 0.24  | 0.45  | 0.77  |
| Loss of mass (Ru)             | 3.51% | 2.44% | 1.91% |
| Loss of mass (Cr)             | 4.83% | 4.53% | 6.2%  |
| Average mass loss (Ru)        |       | 2.62% |       |
| Average mass loss (Cr)        |       | 5.18% |       |

| No. | Catalyst                                    | η <sub>10 (mV)</sub> | Reference                                           |
|-----|---------------------------------------------|----------------------|-----------------------------------------------------|
| 1   | Ru SAs/Ru PNs                               | 23                   | Int. J. Hydrogen Energy. 2020, 18840-<br>18849.     |
| 2   | RuAu-0.2                                    | 24                   | Adv. Energy Mater. 2019, 9, 1803913.                |
| 3   | CN/Cr <sub>2</sub> O <sub>3</sub> /Ru-1     | 28                   | This work                                           |
| 4   | RuCo alloy                                  | 28                   | Nat. Commun. 2017, 8, 14969                         |
| 5   | NiRu alloy                                  | 32                   | J. Mater. Chem. A. 2018, 6, 1376-<br>1381.          |
| 6   | Ru <sub>NP</sub> -Ru <sub>SA</sub> @CFN-800 | 33                   | Adv. Funct. Mater. 2023, 33, 2213058.               |
| 7   | Ru SAs/N-Mo <sub>2</sub> C NSs              | 43                   | Appl. Catal. B., 2020, 277,<br>119236.              |
| 8   | CoRu@NC                                     | 45                   | Nanotechnology. 2018, 29, 225403.                   |
| 9   | Ru <sub>2</sub> P@PNC/CC-900                | 50                   | ACS Appl. Energy Mater. 2018, 1, 314-3150.          |
| 10  | Ru1CoP/CDs-1000                             | 51                   | Angew. Chem. Int. Ed. 2021, 60,<br>7234-7244.       |
| 11  | $Ru_{0.10}@2H-MoS_2$                        | 51                   | Appl. Catal. B-Environ. 2021, 298,<br>120490.       |
| 12  | RuP <sub>2</sub> @NPC                       | 52                   | Angew. Chem. Int. Ed. 2017, 56,<br>11559-11564.     |
| 13  | Ru/Co <sub>4</sub> N-CoF <sub>2</sub>       | 53                   | Chem. Eng. J. 2021, 414, 128865.                    |
| 14  | ah-RuO <sub>2</sub> @C                      | 63                   | Nano Energy. 2019, 55, 49-58.                       |
| 15  | CF@Ru-CoCH NWs                              | 66                   | Electrochim. Acta. 2020, 331, 135367.               |
| 16  | RuP <sub>x</sub> @NPC                       | 74                   | ChemSusChem. 2018, 11, 743-752.                     |
| 17  | Ru SAs/ECM                                  | 83                   | Adv. Energy Mater. 2020, 10, 2000882.               |
| 18  | CoRu-O/A@HNC-2                              | 85                   | ACS Appl. Mater. Interfaces. 2020, 12, 51437-51447. |
| 19  | Ru-WSe <sub>2</sub>                         | 87                   | Inorg. Chem. Front. 2019, 6,<br>1382-1387.          |
| 20  | Ru-MoS <sub>2</sub> /CC                     | 90                   | NEW J. CHEM. 2022, 46, 1912-1920.                   |
| 21  | Ru NPs/Mo <sub>2</sub> C NSs                | 95                   | Appl. Catal. B. 2020, 277,<br>119236.               |
| 22  | RuO <sub>2</sub> -NWs@g-CN                  | 95                   | ACS Appl. Mater. Interfaces 2016, 8, 28678-28688.   |
| 23  | Ru/Y(OH) <sub>3</sub>                       | 100                  | Chem. Commun. 2018, 54, 12202-12205.                |
| 24  | SrRuO <sub>3</sub> /CNT                     | 110                  | ACS Appl Energy Mater. 2019, 2,<br>956-960.         |
| 25  | Ru-VN-2                                     | 144                  | ChemElectroChem. 2020, 7,<br>1201-1206.             |

 Table S6. Comparison of HER performances of Ru-based catalysts.